BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34709805)

  • 1. Metabolic Engineering of
    Wang Y; Zhou S; Liu Q; Jeong SH; Zhu L; Yu X; Zheng X; Wei G; Kim SW; Wang C
    J Agric Food Chem; 2021 Nov; 69(44):13135-13142. PubMed ID: 34709805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sesquiterpene Synthase Engineering and Targeted Engineering of α-Santalene Overproduction in
    Zhang J; Wang X; Zhang X; Zhang Y; Wang F; Li X
    J Agric Food Chem; 2022 May; 70(17):5377-5385. PubMed ID: 35465671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing
    Zuo Y; Xiao F; Gao J; Ye C; Jiang L; Dong C; Lian J
    J Agric Food Chem; 2022 Jul; 70(26):8024-8031. PubMed ID: 35729733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization.
    Jia D; Xu S; Sun J; Zhang C; Li D; Lu W
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3511-3520. PubMed ID: 30863877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress in biosynthesis of santalene and santalol].
    Wang Y; Wen M; Li M; Zhao J; Han X
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):862-875. PubMed ID: 29943532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil.
    Zha W; Zhang F; Shao J; Ma X; Zhu J; Sun P; Wu R; Zi J
    Nat Commun; 2022 May; 13(1):2508. PubMed ID: 35523896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.
    Scalcinati G; Partow S; Siewers V; Schalk M; Daviet L; Nielsen J
    Microb Cell Fact; 2012 Aug; 11():117. PubMed ID: 22938570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol.
    Diaz-Chavez ML; Moniodis J; Madilao LL; Jancsik S; Keeling CI; Barbour EL; Ghisalberti EL; Plummer JA; Jones CG; Bohlmann J
    PLoS One; 2013; 8(9):e75053. PubMed ID: 24324844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.
    Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V
    Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli.
    Shukal S; Chen X; Zhang C
    Metab Eng; 2019 Sep; 55():170-178. PubMed ID: 31326469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for α-farnesene production.
    Wang C; Yoon SH; Jang HJ; Chung YR; Kim JY; Choi ES; Kim SW
    Metab Eng; 2011 Nov; 13(6):648-55. PubMed ID: 21907299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered
    Aguilar F; Scheper T; Beutel S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis.
    Celedon JM; Chiang A; Yuen MM; Diaz-Chavez ML; Madilao LL; Finnegan PM; Barbour EL; Bohlmann J
    Plant J; 2016 May; 86(4):289-99. PubMed ID: 26991058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli.
    Zhang Y; Chen H; Zhang Y; Yin H; Zhou C; Wang Y
    Microb Cell Fact; 2021 Feb; 20(1):38. PubMed ID: 33557849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Patchoulol Production in
    Zhou L; Wang Y; Han L; Wang Q; Liu H; Cheng P; Li R; Guo X; Zhou Z
    J Agric Food Chem; 2021 Jul; 69(27):7572-7580. PubMed ID: 34196182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies.
    Jiang P; Fang H; Zhao J; Dong H; Jin Z; Zhang D
    Microb Cell Fact; 2020 Jun; 19(1):118. PubMed ID: 32487216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae.
    Dong C; Shi Z; Huang L; Zhao H; Xu Z; Lian J
    Biotechnol Bioeng; 2021 Nov; 118(11):4269-4277. PubMed ID: 34273106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the downstream MVA pathway using a combination optimization strategy to increase lycopene yield in Escherichia coli.
    Cheng T; Wang L; Sun C; Xie C
    Microb Cell Fact; 2022 Jun; 21(1):121. PubMed ID: 35718767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular regulation of santalol biosynthesis in Santalum album L.
    Rani A; Ravikumar P; Reddy MD; Kush A
    Gene; 2013 Sep; 527(2):642-8. PubMed ID: 23860319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.