BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34709805)

  • 21. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD.
    Zhu Y; Hua Y; Zhang B; Sun L; Li W; Kong X; Hong J
    Microb Cell Fact; 2017 Jan; 16(1):2. PubMed ID: 28049530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene.
    Zhan X; Zhang YH; Chen DF; Simonsen HT
    Front Plant Sci; 2014; 5():636. PubMed ID: 25477891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in biotechnological production of santalenes and santalols.
    Zha WL; Zi JC
    Chin Herb Med; 2021 Jan; 13(1):90-97. PubMed ID: 36117763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase.
    Di Girolamo A; Durairaj J; van Houwelingen A; Verstappen F; Bosch D; Cankar K; Bouwmeester H; de Ridder D; van Dijk ADJ; Beekwilder J
    Arch Biochem Biophys; 2020 Nov; 695():108647. PubMed ID: 33121934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisiting sesquiterpene biosynthetic pathways leading to santalene and its analogues: a comprehensive mechanistic study.
    Jindal G; Sunoj RB
    Org Biomol Chem; 2012 Oct; 10(39):7996-8006. PubMed ID: 22951817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulatory molecule cAMP changes cell fitness of the engineered Escherichia coli for terpenoids production.
    Jeong SH; Park JB; Wang Y; Kim GH; Zhang G; Wei G; Wang C; Kim SW
    Metab Eng; 2021 May; 65():178-184. PubMed ID: 33246165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening.
    Li M; Chen H; Liu C; Guo J; Xu X; Zhang H; Nian R; Xian M
    Microb Cell Fact; 2019 Jan; 18(1):4. PubMed ID: 30626394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway.
    Alonso-Gutierrez J; Koma D; Hu Q; Yang Y; Chan LJG; Petzold CJ; Adams PD; Vickers CE; Nielsen LK; Keasling JD; Lee TS
    Biotechnol Bioeng; 2018 Apr; 115(4):1000-1013. PubMed ID: 29278415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol.
    Zhou L; Wang Q; Shen J; Li Y; Zhang H; Zhang X; Yang S; Jiang Z; Wang M; Li J; Wang Y; Liu H; Zhou Z
    Bioresour Technol; 2024 Jan; 391(Pt B):130004. PubMed ID: 37952591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered
    Aguilar F; Scheper T; Beutel S
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering.
    Rayamajhi V; Dhakal D; Chaudhary AK; Sohng JK
    World J Microbiol Biotechnol; 2018 May; 34(6):77. PubMed ID: 29796897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.