These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34709910)

  • 1. Electrically switchable metallic polymer nanoantennas.
    Karst J; Floess M; Ubl M; Dingler C; Malacrida C; Steinle T; Ludwigs S; Hentschel M; Giessen H
    Science; 2021 Oct; 374(6567):612-616. PubMed ID: 34709910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-active metaobjective from metalenses-on-demand.
    Karst J; Lee Y; Floess M; Ubl M; Ludwigs S; Hentschel M; Giessen H
    Nat Commun; 2022 Nov; 13(1):7183. PubMed ID: 36418295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically switchable metallic polymer metasurface device with gel polymer electrolyte.
    de Jong D; Karst J; Ludescher D; Floess M; Moell S; Dirnberger K; Hentschel M; Ludwigs S; Braun PV; Giessen H
    Nanophotonics; 2023 Apr; 12(8):1397-1404. PubMed ID: 37114093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yttrium hydride nanoantennas for active plasmonics.
    Strohfeldt N; Tittl A; Schäferling M; Neubrech F; Kreibig U; Griessen R; Giessen H
    Nano Lett; 2014 Mar; 14(3):1140-7. PubMed ID: 24576073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Nano Lett; 2017 Aug; 17(8):4793-4800. PubMed ID: 28686459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically switchable capabilities of conductive polymers-based plasmonic nanodisk arrays.
    Li R; Wei X; Liang Y; Gao H; Kurilkina S; Peng W
    Opt Express; 2022 Sep; 30(19):33627-33638. PubMed ID: 36242393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas.
    Karki A; Cincotti G; Chen S; Stanishev V; Darakchieva V; Wang C; Fahlman M; Jonsson MP
    Adv Mater; 2022 Apr; 34(13):e2107172. PubMed ID: 35064601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas.
    Duan Y; Rahmanudin A; Chen S; Kim N; Mohammadi M; Tybrandt K; Jonsson MP
    Adv Mater; 2023 Dec; 35(51):e2303949. PubMed ID: 37528506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.
    Wu D; Yang L; Liu C; Xu Z; Liu Y; Yu Z; Yu L; Chen L; Ma R; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):144. PubMed ID: 29748920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive polymer nanoantennas for dynamic organic plasmonics.
    Chen S; Kang ESH; Shiran Chaharsoughi M; Stanishev V; Kühne P; Sun H; Wang C; Fahlman M; Fabiano S; Darakchieva V; Jonsson MP
    Nat Nanotechnol; 2020 Jan; 15(1):35-40. PubMed ID: 31819242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition.
    Jin Y; Liang J; Wu S; Zhang Y; Zhou L; Wang Q; Liu H; Zhu J
    Adv Mater; 2020 Oct; 32(42):e2000058. PubMed ID: 32930451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Electro Plasmonic and Optic Modulation via a Nanoscopic Electron Reservoir.
    Li W; Zhou Q; Zhang P; Chen XW
    Phys Rev Lett; 2022 May; 128(21):217401. PubMed ID: 35687444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Hydrogenography on Single Magnesium Nanoparticles.
    Sterl F; Linnenbank H; Steinle T; Mörz F; Strohfeldt N; Giessen H
    Nano Lett; 2018 Jul; 18(7):4293-4302. PubMed ID: 29932678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of plasmonic nanoantennas by reversible metal-insulator transition.
    Abate Y; Marvel RE; Ziegler JI; Gamage S; Javani MH; Stockman MI; Haglund RF
    Sci Rep; 2015 Sep; 5():13997. PubMed ID: 26358623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable VO
    Kaydashev V; Slavich A; Domaratskiy I; Zhukov S; Kirtaev R; Mylnikov D; Alymov G; Kutepov M; Kaidashev E
    Appl Opt; 2023 Jun; 62(18):4942-4948. PubMed ID: 37707272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond Laser-Printed Gold Nanoantennas for Electrically Driven and Bias-Tuned Nanoscale Light Sources Operating in Visible and Infrared Spectral Ranges.
    Lebedev DV; Solomonov NA; Dvoretckaia LN; Shkoldin VA; Permyakov DV; Arkhipov AV; Mozharov AM; Pavlov DV; Kuchmizhak AA; Mukhin IS
    J Phys Chem Lett; 2023 Jun; 14(22):5134-5140. PubMed ID: 37252711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance.
    Zhang J; Kosugi Y; Otomo A; Nakano Y; Tanemura T
    Opt Express; 2017 Nov; 25(24):30304-30311. PubMed ID: 29221060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.