These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34709981)
1. Textile azo dyes discolouration using spent mushroom substrate: enzymatic degradation and adsorption mechanisms. Schallemberger JB; Libardi N; Dalari BLSK; Chaves MB; Nagel Hassemer ME Environ Technol; 2023 Apr; 44(9):1265-1286. PubMed ID: 34709981 [TBL] [Abstract][Full Text] [Related]
2. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India. Skariyachan S; Prasanna A; Manjunath SP; Karanth SS; Nazre A Environ Monit Assess; 2016 Feb; 188(2):121. PubMed ID: 26818015 [TBL] [Abstract][Full Text] [Related]
3. Discoloration of textile dyes by spent mushroom substrate of Agaricus bisporus. van Brenk B; Kruidhof L; Kemperman AJB; van der Meer WGJ; Wösten HAB Bioresour Technol; 2024 Jun; 402():130807. PubMed ID: 38723727 [TBL] [Abstract][Full Text] [Related]
4. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Maqbool Z; Hussain S; Ahmad T; Nadeem H; Imran M; Khalid A; Abid M; Martin-Laurent F Environ Sci Pollut Res Int; 2016 Jun; 23(11):11224-11239. PubMed ID: 26920535 [TBL] [Abstract][Full Text] [Related]
5. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Kumar V; Pallavi P; Sen SK; Raut S Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323 [TBL] [Abstract][Full Text] [Related]
6. Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH. El Awady ME; El-Shall FN; Mohamed GE; Abd-Elaziz AM; Abdel-Monem MO; Hassan MG BMC Microbiol; 2024 Jun; 24(1):210. PubMed ID: 38877404 [TBL] [Abstract][Full Text] [Related]
7. Screening and identification of newly isolated Pseudomonas sp. for biodegrading the textile azo dye C.I. Procion Red H-3B. Bera SP; Tank SK J Appl Microbiol; 2021 Jun; 130(6):1949-1959. PubMed ID: 33145923 [TBL] [Abstract][Full Text] [Related]
8. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719 [TBL] [Abstract][Full Text] [Related]
9. Laccase producing bacteria influenced the high decolorization of textile azo dyes with advanced study. Khaled JM; Alyahya SA; Govindan R; Chelliah CK; Maruthupandy M; Alharbi NS; Kadaikunnan S; Issac R; Murugan S; Li WJ Environ Res; 2022 May; 207():112211. PubMed ID: 34656634 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of fungal dye-decolourizing peroxidase (DyP) and ligninolytic enzyme activities in decolourization and mineralization of azo dyes. Rajhans G; Sen SK; Barik A; Raut S J Appl Microbiol; 2020 Dec; 129(6):1633-1643. PubMed ID: 32491245 [TBL] [Abstract][Full Text] [Related]
11. Biocatalytic potential of Brassica oleracea L. var. botrytis leaves peroxidase for efficient degradation of textile dyes in aqueous medium. Kalsoom U; Bhatti HN; Aftab K; Amin F; Jesionowski T; Bilal M Bioprocess Biosyst Eng; 2023 Mar; 46(3):453-465. PubMed ID: 36454313 [TBL] [Abstract][Full Text] [Related]
12. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. Yang SO; Sodaneath H; Lee JI; Jung H; Choi JH; Ryu HW; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):862-872. PubMed ID: 28463583 [TBL] [Abstract][Full Text] [Related]
13. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Srinivasan S; Sadasivam SK; Gunalan S; Shanmugam G; Kothandan G Environ Pollut; 2019 May; 248():599-608. PubMed ID: 30836241 [TBL] [Abstract][Full Text] [Related]
14. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae. Corso CR; Almeida EJ; Santos GC; Morão LG; Fabris GS; Mitter EK Water Sci Technol; 2012; 65(8):1490-5. PubMed ID: 22466598 [TBL] [Abstract][Full Text] [Related]
15. Optimization of spore laccase production by El-Bendary MA; Ezzat SM; Ewais EA; Al-Zalama MA Prep Biochem Biotechnol; 2021; 51(1):16-27. PubMed ID: 32633607 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Khandare RV; Govindwar SP Biotechnol Adv; 2015 Dec; 33(8):1697-714. PubMed ID: 26386310 [TBL] [Abstract][Full Text] [Related]
17. Ikram M; Naeem M; Zahoor M; Hanafiah MM; Oyekanmi AA; Islam NU; Ullah M; Mahnashi MH; Ali AA; Jalal NA; Bantun F; Momenah AM; Sadiq A Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142543 [TBL] [Abstract][Full Text] [Related]
18. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Routoula E; Patwardhan SV Environ Sci Technol; 2020 Jan; 54(2):647-664. PubMed ID: 31913605 [TBL] [Abstract][Full Text] [Related]
19. Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: A lab to land approach for in situ soil remediation. Watharkar AD; Kadam SK; Khandare RV; Kolekar PD; Jeon BH; Jadhav JP; Govindwar SP Ecotoxicol Environ Saf; 2018 Oct; 161():70-77. PubMed ID: 29859410 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic Textile Dyes Decolorization by In vitro and In silico Studies. Ayla S; Kallubai M; Pallipati SD; Narasimha G Recent Pat Biotechnol; 2019; 13(4):268-276. PubMed ID: 31241023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]