BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1263 related articles for article (PubMed ID: 34710477)

  • 1. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration.
    Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L
    Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.
    Ruan SQ; Deng J; Yan L; Huang WL
    Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration.
    Li X; Zhang R; Tan X; Li B; Liu Y; Wang X
    Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide.
    Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X
    Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin.
    Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ
    Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration.
    Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z
    Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration.
    Shen X; Zhang Y; Gu Y; Xu Y; Liu Y; Li B; Chen L
    Biomaterials; 2016 Nov; 106():205-16. PubMed ID: 27566869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration.
    Niu B; Li B; Gu Y; Shen X; Liu Y; Chen L
    J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model.
    He Y; Dong Y; Cui F; Chen X; Lin R
    PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of Bone Regeneration in Critical-Size Defect Using BMP-9-Loaded nHA/ColI/MWCNTs Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells.
    Zhang R; Li X; Liu Y; Gao X; Zhu T; Lu L
    Biomed Res Int; 2019; 2019():7343957. PubMed ID: 31111065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model.
    Fang CH; Sun CK; Lin YW; Hung MC; Lin HY; Li CH; Lin IP; Chang HC; Sun JS; Chang JZ
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects.
    Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B
    Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns.
    Lan Y; Li W; Jiao Y; Guo R; Zhang Y; Xue W; Zhang Y
    Acta Biomater; 2014 Jul; 10(7):3167-76. PubMed ID: 24704698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.