These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34710597)

  • 1. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering.
    Meng J; Chroumpi T; Mäkelä MR; de Vries RP
    Bioresour Technol; 2022 Jan; 344(Pt A):126199. PubMed ID: 34710597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Cell Surface Display of β-d-Glucosidase (BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose Reductase (XR) in Saccharomyces cerevisiae Enhance Cellobiose/Xylose Coutilization for Xylitol Bioproduction from Lignocellulosic Biomass.
    Guirimand GGY; Bamba T; Matsuda M; Inokuma K; Morita K; Kitada Y; Kobayashi Y; Yukawa T; Sasaki K; Ogino C; Hasunuma T; Kondo A
    Biotechnol J; 2019 Sep; 14(9):e1800704. PubMed ID: 31283105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport.
    van de Vondervoort PJ; de Groot MJ; Ruijter GJ; Visser J
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):881-6. PubMed ID: 16932954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene.
    Songdech P; Intasit R; Yingchutrakul Y; Butkinaree C; Ratanakhanokchai K; Soontorngun N
    Microb Cell Fact; 2022 Mar; 21(1):32. PubMed ID: 35248023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network.
    Khosravi C; Kowalczyk JE; Chroumpi T; Battaglia E; Aguilar Pontes MV; Peng M; Wiebenga A; Ng V; Lipzen A; He G; Bauer D; Grigoriev IV; de Vries RP
    BMC Genomics; 2019 Nov; 20(1):853. PubMed ID: 31726994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid.
    Lekshmi Sundar MS; Madhavan Nampoothiri K
    Bioresour Technol; 2022 Feb; 345():126548. PubMed ID: 34906704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of lignocellulosic biomass to xylitol: An overview.
    Venkateswar Rao L; Goli JK; Gentela J; Koti S
    Bioresour Technol; 2016 Aug; 213():299-310. PubMed ID: 27142629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.
    Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60.
    Tsuyama T; Yamaguchi M; Kamei I
    Bioresour Technol; 2017 Aug; 238():241-247. PubMed ID: 28433914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation of xylitol formation and lignocellulose degradation in yeast.
    Bianchini IA; Jofre FM; Queiroz SS; Lacerda TM; Felipe MDGA
    Appl Microbiol Biotechnol; 2023 May; 107(10):3143-3151. PubMed ID: 37039848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of cotton stalk hydrolysate for xylitol production.
    Sapcı B; Akpinar O; Bolukbasi U; Yilmaz L
    Prep Biochem Biotechnol; 2016 Jul; 46(5):474-82. PubMed ID: 26444685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries.
    Felipe Hernández-Pérez A; de Arruda PV; Sene L; da Silva SS; Kumar Chandel A; de Almeida Felipe MDG
    Crit Rev Biotechnol; 2019 Nov; 39(7):924-943. PubMed ID: 31311338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures.
    Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L
    Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate.
    Hua Y; Wang J; Zhu Y; Zhang B; Kong X; Li W; Wang D; Hong J
    Microb Cell Fact; 2019 Feb; 18(1):24. PubMed ID: 30709398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-routing of Sugar Catabolism Provides a Better Insight Into Fungal Flexibility in Using Plant Biomass-Derived Monomers as Substrates.
    Chroumpi T; Peng M; Markillie LM; Mitchell HD; Nicora CD; Hutchinson CM; Paurus V; Tolic N; Clendinen CS; Orr G; Baker SE; Mäkelä MR; de Vries RP
    Front Bioeng Biotechnol; 2021; 9():644216. PubMed ID: 33763411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.
    Dhar KS; Wendisch VF; Nampoothiri KM
    J Biotechnol; 2016 Jul; 230():63-71. PubMed ID: 27184428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic strategies to produce xylitol: an economical venture.
    Xu Y; Chi P; Bilal M; Cheng H
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5143-5160. PubMed ID: 31101942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose.
    Yang BX; Xie CY; Xia ZY; Wu YJ; Gou M; Tang YQ
    FEMS Yeast Res; 2020 Dec; 20(8):. PubMed ID: 33201998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.