BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34710683)

  • 1. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.).
    Xu Z; Wang C; Yan H; Zhao Z; You L; Ho CT
    Food Chem; 2022 Mar; 373(Pt A):131396. PubMed ID: 34710683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the difference in color enhancement effect on cyanidin-3-O-glucoside by phenolic acids and the interaction mechanism.
    Cao Y; Zhao B; Li Y; Gao H; Xia Q; Fang Z
    Food Chem; 2023 Jun; 411():135409. PubMed ID: 36682168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio.
    Zhang B; He F; Zhou PP; Liu Y; Duan CQ
    Food Chem; 2016 May; 199():220-8. PubMed ID: 26775964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.
    Qian BJ; Liu JH; Zhao SJ; Cai JX; Jing P
    Food Chem; 2017 Aug; 228():526-532. PubMed ID: 28317759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis.
    Ni Y; Chen H; Liu D; Zeng L; Chen P; Liu C
    BMC Plant Biol; 2021 May; 21(1):214. PubMed ID: 33980175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.
    Malaj N; De Simone BC; Quartarolo AD; Russo N
    Food Chem; 2013 Dec; 141(4):3614-20. PubMed ID: 23993528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of pyranoanthocyanins using Escherichia coli co-cultures.
    Akdemir H; Silva A; Zha J; Zagorevski DV; Koffas MAG
    Metab Eng; 2019 Sep; 55():290-298. PubMed ID: 31125607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthocyanin color behavior and stability during storage: effect of intermolecular copigmentation.
    Eiro MJ; Heinonen M
    J Agric Food Chem; 2002 Dec; 50(25):7461-6. PubMed ID: 12452676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation.
    Fan L; Wang Y; Xie P; Zhang L; Li Y; Zhou J
    Food Chem; 2019 Mar; 275():299-308. PubMed ID: 30724200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects and mechanism of natural phenolic acids/fatty acids on copigmentation of purple sweet potato anthocyanins.
    Lv X; Mu J; Wang W; Liu Y; Lu X; Sun J; Wang J; Ma Q
    Curr Res Food Sci; 2022; 5():1243-1250. PubMed ID: 36032044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High yield production of cyanidin-derived pyranoanthocyanins using 4-vinylphenol and 4-vinylguaiacol as cofactors.
    Miyagusuku-Cruzado G; Voss DM; Ortiz-Santiago TN; Cheng Y; Giusti MM
    Food Chem; 2023 Nov; 427():136705. PubMed ID: 37406449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome.
    Rao MJ; Duan M; Yang M; Fan H; Shen S; Hu L; Wang L
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008763
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of organic acids on color intensification, thermodynamics, and copigmentation interactions with anthocyanins.
    Lv X; Li L; Lu X; Wang W; Sun J; Liu Y; Mu J; Ma Q; Wang J
    Food Chem; 2022 Dec; 396():133691. PubMed ID: 35842999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS.
    Yin NW; Wang SX; Jia LD; Zhu MC; Yang J; Zhou BJ; Yin JM; Lu K; Wang R; Li JN; Qu CM
    J Agric Food Chem; 2019 Oct; 67(40):11053-11065. PubMed ID: 31525973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between a Commercial Mannoprotein and Cyanidin-3-
    Liu C; Li X; Zeng Y; Liang S; Sun J; Bai W
    J Agric Food Chem; 2023 Nov; ():. PubMed ID: 37910136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae).
    Saito N; Tatsuzawa F; Toki K; Shinoda K; Shigihara A; Honda T
    Phytochemistry; 2011 Dec; 72(17):2219-29. PubMed ID: 21903230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes.
    Yin Z; Wu Y; Chen Y; Qie X; Zeng M; Wang Z; Qin F; Chen J; He Z
    Food Chem; 2021 Mar; 340():127915. PubMed ID: 32889208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability Enhancement of Anthocyanins from Blackcurrant (
    Azman EM; Yusof N; Chatzifragkou A; Charalampopoulos D
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions.
    Liu Y; Zhang XK; Shi Y; Duan CQ; He F
    Food Chem; 2019 Jun; 283():315-323. PubMed ID: 30722877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins.
    Zhu Y; Chen H; Lou L; Chen Y; Ye X; Chen J
    Food Sci Nutr; 2020 Jul; 8(7):3234-3242. PubMed ID: 32724588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.