BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34710902)

  • 1. Learning the Synaptic and Intrinsic Membrane Dynamics Underlying Working Memory in Spiking Neural Network Models.
    Li Y; Kim R; Sejnowski TJ
    Neural Comput; 2021 Nov; 33(12):3264-3287. PubMed ID: 34710902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
    Fiebig F; Lansner A
    J Neurosci; 2017 Jan; 37(1):83-96. PubMed ID: 28053032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks.
    Kim R; Sejnowski TJ
    Nat Neurosci; 2021 Jan; 24(1):129-139. PubMed ID: 33288909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning recurrent dynamics in spiking networks.
    Kim CM; Chow CC
    Elife; 2018 Sep; 7():. PubMed ID: 30234488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow manifolds within network dynamics encode working memory efficiently and robustly.
    Ghazizadeh E; Ching S
    PLoS Comput Biol; 2021 Sep; 17(9):e1009366. PubMed ID: 34525089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact neural mass model for synaptic-based working memory.
    Taher H; Torcini A; Olmi S
    PLoS Comput Biol; 2020 Dec; 16(12):e1008533. PubMed ID: 33320855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training Spiking Neural Networks in the Strong Coupling Regime.
    Kim CM; Chow CC
    Neural Comput; 2021 Apr; 33(5):1199-1233. PubMed ID: 34496392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent neural networks of integrate-and-fire cells simulating short-term memory and wrist movement tasks derived from continuous dynamic networks.
    Maier MA; Shupe LE; Fetz EE
    J Physiol Paris; 2003; 97(4-6):601-12. PubMed ID: 15242669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trial-to-Trial Variability of Spiking Delay Activity in Prefrontal Cortex Constrains Burst-Coding Models of Working Memory.
    Li D; Constantinidis C; Murray JD
    J Neurosci; 2021 Oct; 41(43):8928-8945. PubMed ID: 34551937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple framework for constructing functional spiking recurrent neural networks.
    Kim R; Li Y; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22811-22820. PubMed ID: 31636215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks.
    Winston CN; Mastrovito D; Shea-Brown E; Mihalas S
    Neural Comput; 2023 Mar; 35(4):555-592. PubMed ID: 36827598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circuit mechanisms for the maintenance and manipulation of information in working memory.
    Masse NY; Yang GR; Song HF; Wang XJ; Freedman DJ
    Nat Neurosci; 2019 Jul; 22(7):1159-1167. PubMed ID: 31182866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
    Hoerzer GM; Legenstein R; Maass W
    Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuroscience-inspired spiking neural network for EEG-based auditory spatial attention detection.
    Faghihi F; Cai S; Moustafa AA
    Neural Netw; 2022 Aug; 152():555-565. PubMed ID: 35679747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.