BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34711049)

  • 1. Label-Free Imaging of Nanoscale Displacements and Free-Energy Profiles of Focal Adhesions with Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Wang R; Jiang J; Wan Z; Wang S
    ACS Sens; 2021 Nov; 6(11):4244-4254. PubMed ID: 34711049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy.
    Zhang P; Jiang J; Zhou X; Kolay J; Wang R; Wan Z; Wang S
    Chem Sci; 2022 Nov; 13(43):12760-12768. PubMed ID: 36519046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Scattering Microscopy for Label-Free Imaging of Molecular Binding Kinetics: From Single Molecules to Single Cells.
    Zhang P; Zhou X; Wang S
    Chem Methods; 2023 Jun; 3(6):. PubMed ID: 37448471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell-Surface Adhesion Using Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Jiang J; Kolay J; Wang R; Ma G; Wan Z; Wang S
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209469. PubMed ID: 35922374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution surface plasmon resonance imaging for single cells.
    Peterson AW; Halter M; Tona A; Plant AL
    BMC Cell Biol; 2014 Dec; 15():35. PubMed ID: 25441447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Single-Molecule Protein Binding Kinetics in Complex Media with Prism-Coupled Plasmonic Scattering Imaging.
    Zhang P; Ma G; Wan Z; Wang S
    ACS Sens; 2021 Mar; 6(3):1357-1366. PubMed ID: 33720692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the formation of focal adhesions on patterned surfaces using super-resolution imaging.
    Chien FC; Kuo CW; Yang ZH; Chueh DY; Chen P
    Small; 2011 Oct; 7(20):2906-13. PubMed ID: 21861294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective force-dependence.
    Xu L; Braun LJ; Rönnlund D; Widengren J; Aspenström P; Gad AKB
    FEBS J; 2018 May; 285(9):1635-1652. PubMed ID: 29542240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into adhesion biology using single-molecule localization microscopy.
    Tabarin T; Pageon SV; Bach CT; Lu Y; O'Neill GM; Gooding JJ; Gaus K
    Chemphyschem; 2014 Mar; 15(4):606-18. PubMed ID: 24497323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Optical Imaging of Nanoscale Single Entities.
    Zhou X; Chieng A; Wang S
    ACS Sens; 2024 Feb; 9(2):543-554. PubMed ID: 38346398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells.
    Guadarrama Bello D; Fouillen A; Badia A; Nanci A
    Acta Biomater; 2017 Sep; 60():339-349. PubMed ID: 28728969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions.
    Deschout H; Lukes T; Sharipov A; Szlag D; Feletti L; Vandenberg W; Dedecker P; Hofkens J; Leutenegger M; Lasser T; Radenovic A
    Nat Commun; 2016 Dec; 7():13693. PubMed ID: 27991512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking.
    Rossier O; Giannone G
    Exp Cell Res; 2016 Apr; 343(1):28-34. PubMed ID: 26571074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions.
    Orré T; Joly A; Karatas Z; Kastberger B; Cabriel C; Böttcher RT; Lévêque-Fort S; Sibarita JB; Fässler R; Wehrle-Haller B; Rossier O; Giannone G
    Nat Commun; 2021 May; 12(1):3104. PubMed ID: 34035280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis.
    Davies PF; Robotewskyj A; Griem ML
    J Clin Invest; 1993 Jun; 91(6):2640-52. PubMed ID: 8514872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution.
    Xu J; Zhang P; Chen Y
    Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions.
    Dumbauld DW; Michael KE; Hanks SK; García AJ
    Biol Cell; 2010 Jan; 102(4):203-213. PubMed ID: 19883375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in label-free imaging of cell-matrix adhesions.
    Zhou P; Ding L; Yan Y; Wang Y; Su B
    Chem Commun (Camb); 2023 Feb; 59(17):2341-2351. PubMed ID: 36744880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions.
    Case LB; Baird MA; Shtengel G; Campbell SL; Hess HF; Davidson MW; Waterman CM
    Nat Cell Biol; 2015 Jul; 17(7):880-92. PubMed ID: 26053221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.