These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34711272)
41. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
42. Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti. Albernaz DA; Tai MH; Luz C Med Vet Entomol; 2009 Jun; 23(2):141-7. PubMed ID: 19309438 [TBL] [Abstract][Full Text] [Related]
43. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. Butt TM; Greenfield BP; Greig C; Maffeis TG; Taylor JW; Piasecka J; Dudley E; Abdulla A; Dubovskiy IM; Garrido-Jurado I; Quesada-Moraga E; Penny MW; Eastwood DC PLoS One; 2013; 8(12):e81686. PubMed ID: 24349111 [TBL] [Abstract][Full Text] [Related]
45. Entomopathogenic fungus as a biological control for an important vector of livestock disease: the Culicoides biting midge. Ansari MA; Pope EC; Carpenter S; Scholte EJ; Butt TM PLoS One; 2011 Jan; 6(1):e16108. PubMed ID: 21264343 [TBL] [Abstract][Full Text] [Related]
46. Estimating Contact Rates Between Reyes-Villanueva F; Russell TL; Rodríguez-Pérez MA Front Cell Infect Microbiol; 2021; 11():616679. PubMed ID: 33996617 [TBL] [Abstract][Full Text] [Related]
47. Adhesion and virulence properties of native Metarhizium fungal strains from Burkina Faso for the control of malaria vectors. Sare I; Baldini F; Viana M; Badolo A; Djigma F; Diabate A; Bilgo E Parasit Vectors; 2023 Nov; 16(1):406. PubMed ID: 37936204 [TBL] [Abstract][Full Text] [Related]
48. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. Iwanicki NSA; Mascarin GM; Moreno SG; Eilenberg J; Delalibera Júnior I World J Microbiol Biotechnol; 2020 Apr; 36(5):71. PubMed ID: 32350696 [TBL] [Abstract][Full Text] [Related]
49. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. Prado R; Macedo-Salles PA; Duprat RC; Baptista ARS; Feder D; Lima JBP; Butt T; Ratcliffe NA; Mello CB J Med Entomol; 2020 Feb; 57(2):454-462. PubMed ID: 31559435 [TBL] [Abstract][Full Text] [Related]
50. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Terradas G; McGraw EA Curr Opin Insect Sci; 2017 Aug; 22():37-44. PubMed ID: 28805637 [TBL] [Abstract][Full Text] [Related]
52. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Alves FM; Bernardo CC; Paixão FR; Barreto LP; Luz C; Humber RA; Fernandes ÉK Parasitol Res; 2017 Jan; 116(1):111-121. PubMed ID: 27704216 [TBL] [Abstract][Full Text] [Related]
53. Effect of UV-B Irradiation on Water-Suspended Metarhizium anisopliae s.l. (Hypocreales: Clavicipitaceae) Conidia and Their Larvicidal Activity in Aedes aegypti (Diptera: Culicidae). Falvo ML; Albornoz Medina P; Rodrigues J; López Lastra CC; García JJ; Fernandes ÉKK; Luz C J Med Entomol; 2018 Aug; 55(5):1330-1333. PubMed ID: 29750411 [TBL] [Abstract][Full Text] [Related]
54. Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Ravindran K; Akutse KS; Sivaramakrishnan S; Wang L Toxicon; 2016 Sep; 120():89-96. PubMed ID: 27452930 [TBL] [Abstract][Full Text] [Related]
55. Impact of short-term temperature challenges on the larvicidal activities of the entomopathogenic watermold Leptolegnia chapmanii against Aedes aegypti, and development on infected dead larvae. Muniz ER; Catão AML; Rueda-Páramo ME; Rodrigues J; López Lastra CC; García JJ; Fernandes ÉKK; Luz C Fungal Biol; 2018 Jun; 122(6):430-435. PubMed ID: 29801786 [TBL] [Abstract][Full Text] [Related]
57. Wolbachia confers protection against the entomopathogenic fungus Metarhizium pingshaense in African Aedes aegypti. Bilgo E; Mancini MV; Gnambani JE; Dokpomiwa HAT; Murdochy S; Lovett B; St Leger R; Sinkins SP; Diabate A Environ Microbiol Rep; 2024 Aug; 16(4):e13316. PubMed ID: 39097980 [TBL] [Abstract][Full Text] [Related]
58. Exposure of newly deposited Aedes aegypti eggs to Metarhizium humberi and fungal development on the eggs. Sousa NA; Rodrigues J; Luz C; Humber RA J Invertebr Pathol; 2023 Mar; 197():107898. PubMed ID: 36806464 [TBL] [Abstract][Full Text] [Related]
59. Characterization, identification and virulence of Metarhizium species from Cuba to control the sweet potato weevil, Cylas formicarius Fabricius (Coleoptera: Brentidae). Baró Y; Schuster C; Gato Y; Márquez ME; Leclerque A J Appl Microbiol; 2022 May; 132(5):3705-3716. PubMed ID: 35064983 [TBL] [Abstract][Full Text] [Related]
60. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Bernardo CDC; Pereira-Junior RA; Luz C; Mascarin GM; Kamp Fernandes ÉK Fungal Biol; 2020 Aug; 124(8):714-722. PubMed ID: 32690253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]