These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34711324)
1. Grafting of polymers via ring-opening polymerization for electrochemical assay of alkaline phosphatase activity. Zhu X; Wang W; Lu J; Hao L; Yang H; Liu Y; Si F; Kong J Anal Chim Acta; 2021 Nov; 1185():339069. PubMed ID: 34711324 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical detection of alkaline phosphatase activity via atom transfer radical polymerization. Li X; Lu J; Li Z; Yang H; Li W; Liu Y; Miao M Bioelectrochemistry; 2022 Apr; 144():107998. PubMed ID: 34808503 [TBL] [Abstract][Full Text] [Related]
3. A novel electrochemical platform for assay of alkaline phosphatase based on amifostine and ATRP signal amplification. Zhang Y; Li P; Lu J; Li D; Yang H; Li X; Liu Y Anal Bioanal Chem; 2022 Sep; 414(23):6955-6964. PubMed ID: 35972525 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Si F; Zhang Y; Lu J; Hou M; Yang H; Liu Y Talanta; 2023 Jan; 252():123775. PubMed ID: 36037766 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical detection of alkaline phosphatase activity through enzyme-catalyzed reaction using aminoferrocene as an electroactive probe. Wang W; Lu J; Hao L; Yang H; Song X; Si F Anal Bioanal Chem; 2021 Mar; 413(7):1827-1836. PubMed ID: 33481047 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical immunosensor for highly sensitive detection of cTnI via in-situ initiated ROP signal amplification strategy. Cheng D; Zhou Z; Shang S; Wang H; Guan H; Yang H; Liu Y Anal Chim Acta; 2022 Aug; 1219():340032. PubMed ID: 35715132 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical biosensor for highly sensitive detection of cTnI based on a dual signal amplification strategy of ARGET ATRP and ROP. Gao T; Zhou Z; Cheng D; Liu Y; Yang H; Wang Y Talanta; 2024 Jan; 266(Pt 1):125009. PubMed ID: 37531884 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive electrochemical detection of CYFRA 21-1 via in-situ initiated ROP signal amplification strategy. Lu J; Hao L; Yang F; Liu Y; Yang H; Yan S Anal Chim Acta; 2021 Oct; 1180():338889. PubMed ID: 34538315 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification. Liu S; Wei W; Sun X; Wang L Biosens Bioelectron; 2016 Sep; 83():33-8. PubMed ID: 27093488 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent assay of alkaline phosphatase activity via atom transfer radical polymerization. Lu J; Li D; Ma L; Miao M; Liu Y; Kong J Mikrochim Acta; 2022 Feb; 189(3):84. PubMed ID: 35129694 [TBL] [Abstract][Full Text] [Related]
11. Dual signal amplification based on polysaccharide-initiated ring-opening polymerization and click polymerization for exosomes detection. Zhu X; Liu Z; Li J; Li Z; Si F; Yang H; Kong J Talanta; 2021 Oct; 233():122531. PubMed ID: 34215034 [TBL] [Abstract][Full Text] [Related]
12. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. Chen Z; Liu S; Yu X; Hao L; Wang L; Liu S Analyst; 2019 Oct; 144(20):5971-5979. PubMed ID: 31498361 [TBL] [Abstract][Full Text] [Related]
13. Heating promoted super sensitive electrochemical detection of p53 gene based on alkaline phosphatase and nicking endonuclease Nt.BstNBI-assisted target recycling amplification strategy at heated gold disk electrode. Mi ZZ; Hu HC; Sun JJ; Wu SH Anal Chim Acta; 2023 Sep; 1275():341583. PubMed ID: 37524467 [TBL] [Abstract][Full Text] [Related]
14. Functionalized graphene oxide in situ initiated ring-opening polymerization for highly sensitive sensing of cytokeratin-19 fragment. Liu Y; Hao L; Wang W; Yang H; Si F; Kong J Mikrochim Acta; 2021 Mar; 188(4):123. PubMed ID: 33712913 [TBL] [Abstract][Full Text] [Related]
15. Cascade signal amplification electrochemical biosensor based on AgNPs and ring opening polymerization for determination of Ochratoxin A. Guo L; Cui Z; Xue J; Zhang Y; Yang H; Miao M Mikrochim Acta; 2023 Oct; 190(11):432. PubMed ID: 37806989 [TBL] [Abstract][Full Text] [Related]
16. Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification. Hua X; Zhou X; Guo S; Zheng T; Yuan R; Xu W Mikrochim Acta; 2019 Feb; 186(3):158. PubMed ID: 30715613 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO Li X; Zhu L; Zhou Y; Yin H; Ai S Anal Chem; 2017 Feb; 89(4):2369-2376. PubMed ID: 28219249 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive electrochemical detection of miRNA based on polymerization signal amplification. Wang Q; Sun H; Wen D; Wang L; Li L; Kong J; Zhang X Talanta; 2021 Dec; 235():122744. PubMed ID: 34517612 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition-Fragmentation Chain Transfer Polymerization. Hu Q; Kong J; Han D; Niu L; Zhang X ACS Sens; 2019 Jan; 4(1):235-241. PubMed ID: 30620562 [TBL] [Abstract][Full Text] [Related]
20. An ultrasensitive electrochemical sensor for phospholipase C Li X; Meng P; Sun M; Chen Y; Song Z; Wang X; Li N; Sun Y Analyst; 2023 May; 148(10):2352-2361. PubMed ID: 37098798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]