These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34711325)
1. Measurement error due to self-absorption in calibration-free laser-induced breakdown spectroscopy. Taleb A; Motto-Ros V; Carru MJ; Axente E; Craciun V; Pelascini F; Hermann J Anal Chim Acta; 2021 Nov; 1185():339070. PubMed ID: 34711325 [TBL] [Abstract][Full Text] [Related]
2. A numerical procedure for understanding the self-absorption effects in laser induced breakdown spectroscopy. John LM; Anoop KK RSC Adv; 2023 Oct; 13(42):29613-29624. PubMed ID: 37818263 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Multi-elemental Thin Films via Calibration-Free Laser-Induced Breakdown Spectroscopy. Hermann J; Axente E; Pelascini F; Craciun V Anal Chem; 2019 Feb; 91(3):2544-2550. PubMed ID: 30615420 [TBL] [Abstract][Full Text] [Related]
4. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel. Fu H; Dong F; Wang H; Jia J; Ni Z Appl Spectrosc; 2017 Aug; 71(8):1982-1989. PubMed ID: 28485983 [TBL] [Abstract][Full Text] [Related]
5. Application of calibration-free high repetition rate laser-ablation spark-induced breakdown spectroscopy for the quantitative elemental analysis of a silver alloy. Gao J; Kang J; Li R; Chen Y Appl Opt; 2020 May; 59(13):4091-4096. PubMed ID: 32400685 [TBL] [Abstract][Full Text] [Related]
6. Self-Calibrated Laser-Induced Breakdown Spectroscopy for the Quantitative Elemental Analysis of Suspended Volcanic Ash. Taleb A; Dell'Aglio M; Gaudiuso R; Mele D; Dellino P; De Giacomo A Appl Spectrosc; 2024 Jul; 78(7):714-726. PubMed ID: 38529539 [TBL] [Abstract][Full Text] [Related]
7. Self-absorption correction method based on intensity self-calibration of doublet lines. Hou J; Zhang D; Feng Z; Zhu J; Zhang L Opt Express; 2023 Oct; 31(21):34404-34412. PubMed ID: 37859197 [TBL] [Abstract][Full Text] [Related]
8. A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption. Hu Z; Chen F; Zhang D; Chu Y; Wang W; Tang Y; Guo L Anal Chim Acta; 2021 Oct; 1183():339008. PubMed ID: 34627502 [TBL] [Abstract][Full Text] [Related]
9. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference. Li T; Hou Z; Fu Y; Yu J; Gu W; Wang Z Anal Chim Acta; 2019 Jun; 1058():39-47. PubMed ID: 30851852 [TBL] [Abstract][Full Text] [Related]
10. The Influence of Acquisition Delay for Calibration-Free Laser-Induced Breakdown Spectroscopy. Fu H; Dong F; Ni Z; Wang J Appl Spectrosc; 2016 Mar; 70(3):405-15. PubMed ID: 26968454 [TBL] [Abstract][Full Text] [Related]
11. Determination of Stark Shifts and Widths Using Time Resolved Laser-Induced Breakdown Spectroscopy (LIBS) Measurements. Kumar P; Soumyashree S; Rao Epuru N; Banerjee SB; Singh RP; Subramanian KP Appl Spectrosc; 2020 Aug; 74(8):913-920. PubMed ID: 32602354 [TBL] [Abstract][Full Text] [Related]
12. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Sun L; Yu H Talanta; 2009 Jul; 79(2):388-95. PubMed ID: 19559895 [TBL] [Abstract][Full Text] [Related]
13. Quantitative analysis of Fuller's earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy. Rehan I; Khan MZ; Rehan K; Sultana S; Rehman MU; Muhammad R; Ikram M; Anwar H Appl Opt; 2019 Jun; 58(16):4227-4233. PubMed ID: 31251224 [TBL] [Abstract][Full Text] [Related]
14. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements. Hou J; Zhang L; Yin W; Yao S; Zhao Y; Ma W; Dong L; Xiao L; Jia S Opt Express; 2017 Sep; 25(19):23024-23034. PubMed ID: 29041606 [TBL] [Abstract][Full Text] [Related]
15. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel. Fu H; Wang H; Jia J; Ni Z; Dong F Appl Spectrosc; 2018 Aug; 72(8):1183-1188. PubMed ID: 29667843 [TBL] [Abstract][Full Text] [Related]
16. Accurate determination of plasma temperature and electron density using a reference target: one-point calibration LIBS elemental analysis of alloy samples. Zeng H; Li R; Chen Y Appl Opt; 2024 Jan; 63(2):338-344. PubMed ID: 38227226 [TBL] [Abstract][Full Text] [Related]
17. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Boudhib M; Hermann J; Dutouquet C Anal Chem; 2016 Apr; 88(7):4029-35. PubMed ID: 26974717 [TBL] [Abstract][Full Text] [Related]
18. Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis. Kim CK; In JH; Lee SH; Jeong S Opt Lett; 2014 Jul; 39(13):3818-21. PubMed ID: 24978745 [TBL] [Abstract][Full Text] [Related]
19. A Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) Quantitative Analysis Method Based on the Auto-Selection of an Internal Reference Line and Optimized Estimation of Plasma Temperature. Yang J; Li X; Xu J; Ma X Appl Spectrosc; 2018 Jan; 72(1):129-140. PubMed ID: 28891309 [TBL] [Abstract][Full Text] [Related]
20. Determination of Spectroscopic Parameters of Ag(I) and Ag(II) Emission Lines Using Time-Independent Extended C-Sigma Method. Safi A; Aberkane SM; Botto A; Campanella B; Legnaioli S; Poggialini F; Raneri S; Rezaei F; Palleschi V Appl Spectrosc; 2021 Jun; 75(6):654-660. PubMed ID: 33599539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]