These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34711734)

  • 1. Revisiting the g-null Paradox.
    McGrath S; Young JG; Hernán MA
    Epidemiology; 2022 Jan; 33(1):114-120. PubMed ID: 34711734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Model Specification When Using the Parametric G-Formula in the Presence of Censoring.
    Chiu YH; Wen L; McGrath S; Logan R; Dahabreh IJ; Hernán MA
    Am J Epidemiol; 2023 Nov; 192(11):1887-1895. PubMed ID: 37338985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric g-formula implementations for causal survival analyses.
    Wen L; Young JG; Robins JM; Hernán MA
    Biometrics; 2021 Jun; 77(2):740-753. PubMed ID: 32588909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference.
    Murray EJ; Robins JM; Seage GR; Freedberg KA; Hernán MA
    Am J Epidemiol; 2017 Jul; 186(2):131-142. PubMed ID: 28838064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric g-formula for Testing Time-Varying Causal Effects: What It Is, Why It Matters, and How to Implement It in Lavaan.
    Loh WW; Ren D; West SG
    Multivariate Behav Res; 2024 Jul; ():1-24. PubMed ID: 38963381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Causal Inference Methods in the Analysis of Observational Neurosurgical Data: G-Formula and Marginal Structural Model.
    Kawahara T; Shiba K; Tsuchiya A
    World Neurosurg; 2022 May; 161():310-315. PubMed ID: 35505549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-formula for observational studies under stratified interference, with application to bed net use on malaria.
    Kilpatrick KW; Lee C; Hudgens MG
    Stat Med; 2024 Jul; 43(15):2853-2868. PubMed ID: 38726590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-computation demonstration in causal mediation analysis.
    Wang A; Arah OA
    Eur J Epidemiol; 2015 Oct; 30(10):1119-27. PubMed ID: 26537707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
    Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M
    Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imputation approaches for potential outcomes in causal inference.
    Westreich D; Edwards JK; Cole SR; Platt RW; Mumford SL; Schisterman EF
    Int J Epidemiol; 2015 Oct; 44(5):1731-7. PubMed ID: 26210611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifiability and estimation of causal mediation effects with missing data.
    Li W; Zhou XH
    Stat Med; 2017 Nov; 36(25):3948-3965. PubMed ID: 28783880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model averaging approach for estimating propensity scores by optimizing balance.
    Xie Y; Zhu Y; Cotton CA; Wu P
    Stat Methods Med Res; 2019 Jan; 28(1):84-101. PubMed ID: 28712346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On model selection and model misspecification in causal inference.
    Vansteelandt S; Bekaert M; Claeskens G
    Stat Methods Med Res; 2012 Feb; 21(1):7-30. PubMed ID: 21075803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model misspecification and bias for inverse probability weighting estimators of average causal effects.
    Waernbaum I; Pazzagli L
    Biom J; 2023 Feb; 65(2):e2100118. PubMed ID: 36045099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two basic statistical strategies of conducting causal inference in real-world studies.
    Fang Y
    Contemp Clin Trials; 2020 Dec; 99():106193. PubMed ID: 33153972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating Effects of Dynamic Treatment Strategies in Pharmacoepidemiologic Studies with Time-varying Confounding: A Primer.
    Li X; Young JG; Toh S
    Curr Epidemiol Rep; 2017 Dec; 4(4):288-297. PubMed ID: 29204332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doubly robust estimator of risk in the presence of censoring dependent on time-varying covariates: application to a primary prevention trial for coronary events with pravastatin.
    Kawahara T; Shinozaki T; Matsuyama Y
    BMC Med Res Methodol; 2020 Jul; 20(1):204. PubMed ID: 32736528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.