These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34713216)

  • 21. MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts.
    Abernathy DG; Kim WK; McCoy MJ; Lake AM; Ouwenga R; Lee SW; Xing X; Li D; Lee HJ; Heuckeroth RO; Dougherty JD; Wang T; Yoo AS
    Cell Stem Cell; 2017 Sep; 21(3):332-348.e9. PubMed ID: 28886366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging.
    Chao CC; Shen PW; Tzeng TY; Kung HJ; Tsai TF; Wong YH
    Biomedicines; 2021 Nov; 9(11):. PubMed ID: 34829864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using transcription factors for direct reprogramming of neurons
    El Wazan L; Urrutia-Cabrera D; Wong RC
    World J Stem Cells; 2019 Jul; 11(7):431-444. PubMed ID: 31396370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vivo Cellular Reprogramming: The Next Generation.
    Srivastava D; DeWitt N
    Cell; 2016 Sep; 166(6):1386-1396. PubMed ID: 27610565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons.
    Yang H; Zhang L; An J; Zhang Q; Liu C; He B; Hao DJ
    Mol Neurobiol; 2017 Mar; 54(2):1587-1600. PubMed ID: 27660263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global transcriptome profile of the developmental principles of in vitro iPSC-to-motor neuron differentiation.
    Solomon E; Davis-Anderson K; Hovde B; Micheva-Viteva S; Harris JF; Twary S; Iyer R
    BMC Mol Cell Biol; 2021 Feb; 22(1):13. PubMed ID: 33602141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reprogramming neurons for regeneration: The fountain of youth.
    Yang SG; Wang XW; Qian C; Zhou FQ
    Prog Neurobiol; 2022 Jul; 214():102284. PubMed ID: 35533809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application.
    Vasan L; Park E; David LA; Fleming T; Schuurmans C
    Front Cell Dev Biol; 2021; 9():681087. PubMed ID: 34291049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program.
    Karow M; Camp JG; Falk S; Gerber T; Pataskar A; Gac-Santel M; Kageyama J; Brazovskaja A; Garding A; Fan W; Riedemann T; Casamassa A; Smiyakin A; Schichor C; Götz M; Tiwari VK; Treutlein B; Berninger B
    Nat Neurosci; 2018 Jul; 21(7):932-940. PubMed ID: 29915193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures.
    Aversano S; Caiazza C; Caiazzo M
    Front Aging Neurosci; 2022; 14():1069482. PubMed ID: 36620769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Conversion of Somatic Cells into Induced Neurons.
    An N; Xu H; Gao WQ; Yang H
    Mol Neurobiol; 2018 Jan; 55(1):642-651. PubMed ID: 27981499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances.
    McCaughey-Chapman A; Connor B
    Stem Cells Dev; 2018 Dec; 27(24):1674-1692. PubMed ID: 30343634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons.
    Hsu YC; Chen SL; Wang YJ; Chen YH; Wang DY; Chen L; Chen CH; Chen HH; Chiu IM
    Stem Cells Transl Med; 2014 Jun; 3(6):713-22. PubMed ID: 24736401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons.
    Kulangara K; Adler AF; Wang H; Chellappan M; Hammett E; Yasuda R; Leong KW
    Biomaterials; 2014 Jul; 35(20):5327-5336. PubMed ID: 24709523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategic Application of Epigenetic Regulators for Efficient Neuronal Reprogramming of Human Fibroblasts.
    Fernandes GS; Singh RD; De D; Kim KK
    Int J Stem Cells; 2023 May; 16(2):156-167. PubMed ID: 36823979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors.
    Playne R; Jones K; Connor B
    J Stem Cells Regen Med; 2018; 14(1):34-44. PubMed ID: 30018471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular reprogramming of human peripheral blood cells.
    Zhang XB
    Genomics Proteomics Bioinformatics; 2013 Oct; 11(5):264-74. PubMed ID: 24060839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The expanding horizon of MicroRNAs in cellular reprogramming.
    Adlakha YK; Seth P
    Prog Neurobiol; 2017 Jan; 148():21-39. PubMed ID: 27979736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Reprogramming of Somatic Cells to Neurons: Pros and Cons of Chemical Approach.
    Mollinari C; Merlo D
    Neurochem Res; 2021 Jun; 46(6):1330-1336. PubMed ID: 33666839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical compound-based direct reprogramming for future clinical applications.
    Takeda Y; Harada Y; Yoshikawa T; Dai P
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29739872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.