BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34713218)

  • 1. An Improved CRISPR/dCas9 Interference Tool for Neuronal Gene Suppression.
    Duke CG; Bach SV; Revanna JS; Sultan FA; Southern NT; Davis MN; Carullo NVN; Bauman AJ; Phillips RA; Day JJ
    Front Genome Ed; 2020; 2():9. PubMed ID: 34713218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing.
    Moses C; Hodgetts SI; Nugent F; Ben-Ary G; Park KK; Blancafort P; Harvey AR
    Sci Rep; 2020 Jul; 10(1):11393. PubMed ID: 32647121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cre-Dependent CRISPR/dCas9 System for Gene Expression Regulation in Neurons.
    Carullo NVN; Hinds JE; Revanna JS; Tuscher JJ; Bauman AJ; Day JJ
    eNeuro; 2021; 8(4):. PubMed ID: 34321217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system.
    Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation.
    Savell KE; Bach SV; Zipperly ME; Revanna JS; Goska NA; Tuscher JJ; Duke CG; Sultan FA; Burke JN; Williams D; Ianov L; Day JJ
    eNeuro; 2019; 6(1):. PubMed ID: 30863790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in
    Feng Q; Ning X; Qin L; Li J; Li C
    Front Bioeng Biotechnol; 2023; 11():1218832. PubMed ID: 38026848
    [No Abstract]   [Full Text] [Related]  

  • 9. [Levels of sgRNA as a Major Factor Affecting CRISPRi Knockdown Efficiency in K562 Cells].
    Wang Y; Xie Y; Dong ZC; Jiang XJ; Gong P; Lu J; Wan F
    Mol Biol (Mosk); 2021; 55(1):86-95. PubMed ID: 33566028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5.
    Brito LF; Schultenkämper K; Passaglia LMP; Wendisch VF
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):5095-5106. PubMed ID: 32274563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits.
    Bellato M; Frusteri Chiacchiera A; Salibi E; Casanova M; De Marchi D; Castagliuolo I; Cusella De Angelis MG; Magni P; Pasotti L
    Front Bioeng Biotechnol; 2021; 9():743950. PubMed ID: 35155399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual CRISPR interference and activation for targeted reactivation of X-linked endogenous FOXP3 in human breast cancer cells.
    Cui X; Zhang C; Xu Z; Wang S; Li X; Stringer-Reasor E; Bae S; Zeng L; Zhao D; Liu R; Qi LS; Wang L
    Mol Cancer; 2022 Feb; 21(1):38. PubMed ID: 35130925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges.
    Li Y; Zhou LQ
    Bioessays; 2021 Sep; 43(9):e2100086. PubMed ID: 34327721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived
    Li A; Cartwright S; Yu A; Ho SM; Schrode N; Deans PJM; Matos MR; Garcia MF; Townsley KG; Zhang B; Brennand KJ
    STAR Protoc; 2021 Jun; 2(2):100580. PubMed ID: 34151300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.