BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34713218)

  • 21. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional Inhibition of lncRNA gadd7 by CRISPR/dCas9-KRAB Protects Spermatocyte Viability.
    Zhao J; Ma W; Zhong Y; Deng H; Zhou B; Wu Y; Yang M; Li H
    Front Mol Biosci; 2021; 8():652392. PubMed ID: 33778010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Microbial Metabolic Rates Using CRISPR Interference With Expanded PAM Sequences.
    Kim B; Kim HJ; Lee SJ
    Front Microbiol; 2020; 11():282. PubMed ID: 32184769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 26. [CRISPR Interference in Regulation of Bacterial Gene Expression].
    Nadolinskaia NI; Goncharenko AV
    Mol Biol (Mosk); 2022; 56(6):892-899. PubMed ID: 36475476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers.
    Gao X; Tsang JC; Gaba F; Wu D; Lu L; Liu P
    Nucleic Acids Res; 2014 Nov; 42(20):e155. PubMed ID: 25223790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 29. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
    Gilbert LA; Larson MH; Morsut L; Liu Z; Brar GA; Torres SE; Stern-Ginossar N; Brandman O; Whitehead EH; Doudna JA; Lim WA; Weissman JS; Qi LS
    Cell; 2013 Jul; 154(2):442-51. PubMed ID: 23849981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Inducible CRISPRi and CRISPRa Human Stromal/Stem Cell Lines for Controlled Target Gene Transcription during Lineage Differentiation.
    Chen L; Shi K; Qiu W; Aagaard L; Kassem M
    Stem Cells Int; 2020; 2020():8857344. PubMed ID: 32922451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An improved CRISPRi system in
    Qiao S; Bai F; Cai P; Zhou YJ; Yao L
    Synth Syst Biotechnol; 2023 Sep; 8(3):479-485. PubMed ID: 37692202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplex gene regulation by CRISPR-ddCpf1.
    Zhang X; Wang J; Cheng Q; Zheng X; Zhao G; Wang J
    Cell Discov; 2017; 3():17018. PubMed ID: 28607761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and Validation of CRISPR Activator Systems for Overexpression of CB1 Receptors in Neurons.
    Di Maria V; Moindrot M; Ryde M; Bono A; Quintino L; Ledri M
    Front Mol Neurosci; 2020; 13():168. PubMed ID: 33013319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspectives on gene expression regulation techniques in Drosophila.
    Xu RG; Wang X; Shen D; Sun J; Qiao HH; Wang F; Liu LP; Ni JQ
    J Genet Genomics; 2019 Apr; 46(4):213-220. PubMed ID: 31060819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR interference provides increased cell type-specificity compared to the Cre-loxP system.
    Laster DJ; Akel NS; Hendrixson JA; James A; Crawford JA; Fu Q; Berryhill SB; Thostenson JD; Nookaew I; O'Brien CA; Onal M
    iScience; 2023 Aug; 26(8):107428. PubMed ID: 37575184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.