BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34713218)

  • 41. Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation.
    Gamboa L; Phung EV; Li H; Meyers JP; Hart AC; Miller IC; Kwong GA
    ACS Chem Biol; 2020 Feb; 15(2):533-542. PubMed ID: 31904924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.
    Du D; Qi LS
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.top086835. PubMed ID: 26729914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multistage Delivery Nanoparticle Facilitates Efficient CRISPR/dCas9 Activation and Tumor Growth Suppression In Vivo.
    Liu Q; Zhao K; Wang C; Zhang Z; Zheng C; Zhao Y; Zheng Y; Liu C; An Y; Shi L; Kang C; Liu Y
    Adv Sci (Weinh); 2019 Jan; 6(1):1801423. PubMed ID: 30643726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robust and stable transcriptional repression in Giardia using CRISPRi.
    McInally SG; Hagen KD; Nosala C; Williams J; Nguyen K; Booker J; Jones K; Dawson SC
    Mol Biol Cell; 2019 Jan; 30(1):119-130. PubMed ID: 30379614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Up-Regulated Expression of Pro-Apoptotic Long Noncoding RNA lincRNA-p21 with Enhanced Cell Apoptosis in Lupus Nephritis.
    Chen YC; Kuo PY; Chou YC; Chong HE; Hsieh YT; Yang ML; Wu CL; Shiau AL; Wang CR
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex.
    Chen CD; Zeldich E; Li Y; Yuste A; Abraham CR
    J Mol Neurosci; 2018 Feb; 64(2):175-184. PubMed ID: 29352444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors.
    Wang H; Guo R; Du Z; Bai L; Li L; Cui J; Li W; Hoffman AR; Hu JF
    Mol Ther Nucleic Acids; 2018 Jun; 11():23-33. PubMed ID: 29858058
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Dual Lentiviral CRISPR-based Transcriptional Activation System for Gene Expression Regulation in Neurons.
    Savell KE; Sultan FA; Day JJ
    Bio Protoc; 2019 Sep; 9(17):e3348. PubMed ID: 33654850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference.
    Shen CC; Sung LY; Lin SY; Lin MW; Hu YC
    ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A nuclease-dead Cas9-derived tool represses target gene expression.
    Wang B; Liu X; Li Z; Zeng K; Guo J; Xin T; Zhang Z; Li JF; Yang X
    Plant Physiol; 2024 Mar; ():. PubMed ID: 38478589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes.
    Ho SM; Hartley BJ; Flaherty E; Rajarajan P; Abdelaal R; Obiorah I; Barretto N; Muhammad H; Phatnani HP; Akbarian S; Brennand KJ
    Stem Cell Reports; 2017 Aug; 9(2):615-628. PubMed ID: 28757163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional mapping of microRNA promoters with dCas9 fused to transcriptional regulators.
    Kumar P; Courtes M; Lemmers C; Le Digarcher A; Coku I; Monteil A; Hong C; Varrault A; Liu R; Wang L; Bouschet T
    Front Genet; 2023; 14():1147222. PubMed ID: 37214422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of
    Backstrom JR; Sheng J; Wang MC; Bernardo-Colón A; Rex TS
    Mol Ther Methods Clin Dev; 2020 Dec; 19():139-148. PubMed ID: 33024795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene Silencing through CRISPR Interference in Mycoplasmas.
    Evsyutina DV; Fisunov GY; Pobeguts OV; Kovalchuk SI; Govorun VM
    Microorganisms; 2022 Jun; 10(6):. PubMed ID: 35744677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Inducible CRISPR-dCas9-Based Transcriptional Repression System for Cancer Therapy.
    Gu P; Zhao J; Zhang W; Ruan X; Hu L; Zeng Y; Hou X; Zheng X; Gao M; Chi J
    Small Methods; 2024 Jan; ():e2301310. PubMed ID: 38164884
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transforming the CRISPR/dCas9-based gene regulation technique into a forward screening tool in
    Lucky AB; Wang C; Li X; Liang X; Muneer A; Miao J
    iScience; 2024 Apr; 27(4):109602. PubMed ID: 38617559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.