BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 34713231)

  • 1. CRISPR-Based Genetic Manipulation of
    Uthayakumar D; Sharma J; Wensing L; Shapiro RS
    Front Genome Ed; 2020; 2():606281. PubMed ID: 34713231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CRISPR toolbox in medical mycology: State of the art and perspectives.
    Morio F; Lombardi L; Butler G
    PLoS Pathog; 2020 Jan; 16(1):e1008201. PubMed ID: 31945142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a CRISPR-Cas9 System for Efficient Genome Editing of
    Norton EL; Sherwood RK; Bennett RJ
    mSphere; 2017; 2(3):. PubMed ID: 28657072
    [No Abstract]   [Full Text] [Related]  

  • 4. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 5. Use of RNA-Protein Complexes for Genome Editing in Non-
    Grahl N; Demers EG; Crocker AW; Hogan DA
    mSphere; 2017; 2(3):. PubMed ID: 28657070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 7. Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System.
    Min K; Ichikawa Y; Woolford CA; Mitchell AP
    mSphere; 2016; 1(3):. PubMed ID: 27340698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid-Based CRISPR-Cas9 Editing in Multiple Candida Species.
    Lombardi L; Butler G
    Methods Mol Biol; 2022; 2542():13-40. PubMed ID: 36008654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights of CRISPR technology in human pathogenic fungi.
    Román E; Prieto D; Alonso-Monge R; Pla J
    Future Microbiol; 2019 Sep; 14():1243-1255. PubMed ID: 31625446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple
    Lombardi L; Oliveira-Pacheco J; Butler G
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30867327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis.
    Morio F; Lombardi L; Binder U; Loge C; Robert E; Graessle D; Bodin M; Lass-Flörl C; Butler G; Le Pape P
    J Antimicrob Chemother; 2019 Aug; 74(8):2230-2238. PubMed ID: 31106355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling.
    Ravichandran M; Maddalo D
    Front Genet; 2023; 14():1273994. PubMed ID: 37908590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient, Rapid, and Recyclable System for CRISPR-Mediated Genome Editing in
    Nguyen N; Quail MMF; Hernday AD
    mSphere; 2017; 2(2):. PubMed ID: 28497115
    [No Abstract]   [Full Text] [Related]  

  • 16. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
    Shen B; Brown KM; Lee TD; Sibley LD
    mBio; 2014 May; 5(3):e01114-14. PubMed ID: 24825012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi.
    Wang Q; Coleman JJ
    Comput Struct Biotechnol J; 2019; 17():761-769. PubMed ID: 31312414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans.
    Halder V; Porter CBM; Chavez A; Shapiro RS
    Nat Protoc; 2019 Mar; 14(3):955-975. PubMed ID: 30737491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape.
    Ferreira R; David F; Nielsen J
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):467-480. PubMed ID: 29362972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.