BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 34713239)

  • 21. Genome editing for sickle cell disease: still time to correct?
    Ceglie G; Lecis M; Canciani G; Algeri M; Frati G
    Front Pediatr; 2023; 11():1249275. PubMed ID: 38027257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option.
    Starlard-Davenport A; Gu Q; Pace BS
    Mol Diagn Ther; 2022 Sep; 26(5):497-509. PubMed ID: 35553407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies.
    Barbarani G; Łabedz A; Ronchi AE
    Front Genome Ed; 2020; 2():571239. PubMed ID: 34713219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BCL11A-targeted γ-globin gene induction by triterpenoid glycosides of Fagonia indica: A preclinical scientific validation of indigenous herb for the treatment of β-hemoglobinopathies.
    Iftikhar F; Khan MBN; Tehreem S; Kanwal N; Musharraf SG
    Bioorg Chem; 2023 Nov; 140():106768. PubMed ID: 37586133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Butyrate-induced reactivation of the fetal globin genes: a molecular treatment for the beta-hemoglobinopathies.
    Perrine SP; Faller DV
    Experientia; 1993 Feb; 49(2):133-7. PubMed ID: 7680003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies.
    Venkatesan V; Srinivasan S; Babu P; Thangavel S
    Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33077498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene therapy of hemoglobinopathies: progress and future challenges.
    Ikawa Y; Miccio A; Magrin E; Kwiatkowski JL; Rivella S; Cavazzana M
    Hum Mol Genet; 2019 Oct; 28(R1):R24-R30. PubMed ID: 31322165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor.
    Chaand M; Fiore C; Johnston B; D'Ippolito A; Moon DH; Carulli JP; Shearstone JR
    Commun Biol; 2023 Jun; 6(1):640. PubMed ID: 37316562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in globin research using genome-wide association studies and gene editing.
    Orkin SH
    Ann N Y Acad Sci; 2016 Mar; 1368(1):5-10. PubMed ID: 26866328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical significance of mutational variants in beta and alpha genes in patients with hemoglobinopathies from two large Greek centers: a complex interplay between genotype and phenotype.
    Diamantidis MD; Karanikola RA; Polyzoudi C; Delicou S; Manafas A; Savera H; Xydaki A; Kotsiafti A; Tsangalas E; Ikonomou G; Mani E; Ntoulas K; Alexiou E; Argyrakouli I; Koskinas J; Fotiou P
    J Mol Med (Berl); 2023 Sep; 101(9):1073-1082. PubMed ID: 37420139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Editing for β-Hemoglobinopathies: Advances and Challenges.
    Frati G; Miccio A
    J Clin Med; 2021 Jan; 10(3):. PubMed ID: 33525591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies.
    Mussolino C; Strouboulis J
    Front Genome Ed; 2021; 3():618111. PubMed ID: 34713248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic modifiers in hemoglobinopathies.
    Rund D; Fucharoen S
    Curr Mol Med; 2008 Nov; 8(7):600-8. PubMed ID: 18991646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression.
    Antoniou P; Hardouin G; Martinucci P; Frati G; Felix T; Chalumeau A; Fontana L; Martin J; Masson C; Brusson M; Maule G; Rosello M; Giovannangeli C; Abramowski V; de Villartay JP; Concordet JP; Del Bene F; El Nemer W; Amendola M; Cavazzana M; Cereseto A; Romano O; Miccio A
    Nat Commun; 2022 Nov; 13(1):6618. PubMed ID: 36333351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of lentiviral gene transfer approaches designed to promote fetal hemoglobin production for the treatment of β-hemoglobinopathies.
    Daniel-Moreno A; Lamsfus-Calle A; Wilber A; Chambers CB; Johnston I; Antony JS; Epting T; Handgretinger R; Mezger M
    Blood Cells Mol Dis; 2020 Sep; 84():102456. PubMed ID: 32498026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mRNA-Binding Protein IGF2BP1 Restores Fetal Hemoglobin in Cultured Erythroid Cells from Patients with β-Hemoglobin Disorders.
    Chambers CB; Gross J; Pratt K; Guo X; Byrnes C; Lee YT; Lavelle D; Dean A; Miller JL; Wilber A
    Mol Ther Methods Clin Dev; 2020 Jun; 17():429-440. PubMed ID: 32154328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease.
    Demirci S; Leonard A; Essawi K; Tisdale JF
    Mol Ther Methods Clin Dev; 2021 Dec; 23():276-285. PubMed ID: 34729375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disorders of the synthesis of human fetal hemoglobin.
    Manca L; Masala B
    IUBMB Life; 2008 Feb; 60(2):94-111. PubMed ID: 18379999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of Fetal Hemoglobin by Introducing Natural Hereditary Persistence of Fetal Hemoglobin Mutations in the γ-Globin Gene Promoters for Genome Editing Therapies for β-Thalassemia.
    Lu D; Xu Z; Peng Z; Yang Y; Song B; Xiong Z; Ma Z; Guan H; Chen B; Nakamura Y; Zeng J; Liu N; Sun X; Chen D
    Front Genet; 2022; 13():881937. PubMed ID: 35656314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.