BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34713248)

  • 1. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies.
    Mussolino C; Strouboulis J
    Front Genome Ed; 2021; 3():618111. PubMed ID: 34713248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies.
    Zittersteijn HA; Harteveld CL; Klaver-Flores S; Lankester AC; Hoeben RC; Staal FJT; Gonçalves MAFV
    Front Genome Ed; 2020; 2():617780. PubMed ID: 34713239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing.
    Fontana L; Alahouzou Z; Miccio A; Antoniou P
    Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies.
    Wienert B; Martyn GE; Funnell APW; Quinlan KGR; Crossley M
    Trends Genet; 2018 Dec; 34(12):927-940. PubMed ID: 30287096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic modifiers in hemoglobinopathies.
    Rund D; Fucharoen S
    Curr Mol Med; 2008 Nov; 8(7):600-8. PubMed ID: 18991646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia.
    Bao X; Zhang X; Wang L; Wang Z; Huang J; Zhang Q; Ye Y; Liu Y; Chen D; Zuo Y; Liu Q; Xu P; Huang B; Fang J; Lao J; Feng X; Li Y; Kurita R; Nakamura Y; Yu W; Ju C; Huang C; Mohandas N; Li D; Zhao C; Xu X
    Am J Hum Genet; 2021 Apr; 108(4):709-721. PubMed ID: 33735615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treating hemoglobinopathies using gene-correction approaches: promises and challenges.
    Cottle RN; Lee CM; Bao G
    Hum Genet; 2016 Sep; 135(9):993-1010. PubMed ID: 27314256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Globin Gene Expression.
    Davis R; Gurumurthy A; Hossain MA; Gunn EM; Bungert J
    Mol Ther Methods Clin Dev; 2019 Mar; 12():102-110. PubMed ID: 30603654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic approaches to hemoglobin switching in treatment of hemoglobinopathies.
    Stamatoyannopoulos JA; Nienhuis AW
    Annu Rev Med; 1992; 43():497-521. PubMed ID: 1374600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies.
    Barbarani G; Łabedz A; Ronchi AE
    Front Genome Ed; 2020; 2():571239. PubMed ID: 34713219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing for β-Hemoglobinopathies: Advances and Challenges.
    Frati G; Miccio A
    J Clin Med; 2021 Jan; 10(3):. PubMed ID: 33525591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies.
    Perrine SP; Pace BS; Faller DV
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):233-48. PubMed ID: 24589264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal models of β-hemoglobinopathies: utility and limitations.
    McColl B; Vadolas J
    J Blood Med; 2016; 7():263-274. PubMed ID: 27853395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Butyrate-induced reactivation of the fetal globin genes: a molecular treatment for the beta-hemoglobinopathies.
    Perrine SP; Faller DV
    Experientia; 1993 Feb; 49(2):133-7. PubMed ID: 7680003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies.
    Costa D; Capuano M; Sommese L; Napoli C
    Blood Cells Mol Dis; 2015 Aug; 55(2):95-100. PubMed ID: 26142322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of diagnostic methods and molecular diagnosis of hemoglobin disorders in Khuzestan province of Iran.
    Fakher R; Bijan K; Taghi AM
    Indian J Hum Genet; 2007 Jan; 13(1):5-15. PubMed ID: 21957335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for hemoglobinopathies: progress and challenges.
    Dong A; Rivella S; Breda L
    Transl Res; 2013 Apr; 161(4):293-306. PubMed ID: 23337292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advance on genome editing for therapy of β-hemoglobinopathies.
    Liu JW; Hong T; Qin X; Liang YM; Zhang P
    Yi Chuan; 2018 Feb; 40(2):95-103. PubMed ID: 29428902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies.
    Demirci S; Leonard A; Tisdale JF
    Hum Mol Genet; 2020 Sep; 29(R1):R100-R106. PubMed ID: 32406490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin genetics: recent contributions of GWAS and gene editing.
    Smith EC; Orkin SH
    Hum Mol Genet; 2016 Oct; 25(R2):R99-R105. PubMed ID: 27340226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.