BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34713497)

  • 1. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma.
    Zhou X; Xue D; Qiu J
    Head Neck; 2022 Jan; 44(1):89-103. PubMed ID: 34713497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Co-Expression Modules and Genes Associated With Tumor Progression in Oral Squamous Cell Carcinoma.
    Fang Z; Wang F; Zhang M; Huang H; Lin Z
    Pathol Oncol Res; 2022; 28():1610481. PubMed ID: 36052378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Associated with Occurrence and Prognosis of Oral Squamous Cell Carcinoma.
    Ge Y; Li W; Ni Q; He Y; Chu J; Wei P
    Med Sci Monit; 2019 Sep; 25():7272-7288. PubMed ID: 31562292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and validation of genes associated with copper death in oral squamous cell carcinoma based on machine learning and weighted gene co-expression network analysis.
    Zhang M; Li Q; Zhang W; Yang Y; Gu J; Dong Q
    J Stomatol Oral Maxillofac Surg; 2023 Dec; 124(6S):101561. PubMed ID: 37451513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased CSTA expression promotes lymphatic metastasis and predicts poor survival in oral squamous cell carcinoma.
    Wang Y; Wang L; Li X; Qu X; Han N; Ruan M; Zhang C
    Arch Oral Biol; 2021 Jun; 126():105116. PubMed ID: 33831734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prognostic Risk Score model for oral squamous cell carcinoma constructed by 6 glycolysis-immune-related genes.
    Liu Y; Wang T; Li R
    BMC Oral Health; 2022 Aug; 22(1):324. PubMed ID: 35922788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression network-based identification of biomarkers correlated with the lymph node metastasis of patients with head and neck squamous cell carcinoma.
    Jin Y; Qin X
    Biosci Rep; 2020 Feb; 40(2):. PubMed ID: 32076707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEDD4L inhibits glycolysis and proliferation of cancer cells in oral squamous cell carcinoma by inducing ENO1 ubiquitination and degradation.
    Zhang G; Zhao X; Liu W
    Cancer Biol Ther; 2022 Dec; 23(1):243-253. PubMed ID: 35316145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Key Biomarkers and Potential Molecular Mechanisms in Oral Squamous Cell Carcinoma by Bioinformatics Analysis.
    Yang B; Dong K; Guo P; Guo P; Jie G; Zhang G; Li T
    J Comput Biol; 2020 Jan; 27(1):40-54. PubMed ID: 31424263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Immune-Related Gene Signature to Identify the Tumor Microenvironment and Prognose Disease Among Patients With Oral Squamous Cell Carcinoma Patients Using ssGSEA: A Bioinformatics and Biological Validation Study.
    Chen Y; Feng Y; Yan F; Zhao Y; Zhao H; Guo Y
    Front Immunol; 2022; 13():922195. PubMed ID: 35935989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers.
    Huang J; Meng Q; Liu R; Li H; Li Y; Yang Z; Wang Y; Wanyan C; Yang X; Wei J
    Clin Transl Oncol; 2023 Oct; 25(10):3006-3020. PubMed ID: 37029240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and validation of key modules and hub genes associated with the pathological stage of oral squamous cell carcinoma by weighted gene co-expression network analysis.
    Hu X; Sun G; Shi Z; Ni H; Jiang S
    PeerJ; 2020; 8():e8505. PubMed ID: 32117620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential druggable targets of cell cycle with small-molecule inhibitors in oral squamous cell carcinoma.
    Zhou X; Jin W; Chen Y; Zhu L; Mo A; Xie Q
    Pharmacogenet Genomics; 2022 Jun; 32(4):125-137. PubMed ID: 34954767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hub methylated-CpG sites and associated genes in oral squamous cell carcinoma.
    Dai Y; Lv Q; Qi T; Qu J; Ni H; Liao Y; Liu P; Qu Q
    Cancer Med; 2020 May; 9(9):3174-3187. PubMed ID: 32155325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a six-gene prognostic signature for oral squamous cell carcinoma.
    Wang J; Wang Y; Kong F; Han R; Song W; Chen D; Bu L; Wang S; Yue J; Ma L
    J Cell Physiol; 2020 Mar; 235(3):3056-3068. PubMed ID: 31538341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma.
    Wang X; Xu H; Zhou Z; Guo S; Chen R
    Biosci Rep; 2022 Feb; 42(2):. PubMed ID: 35129592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Drug Targets of Oral Squamous Cell Carcinoma through a Systems Biology Method and Genome-Wide Microarray Data for Drug Discovery by Deep Learning and Drug Design Specifications.
    Lin YC; Chen BS
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poor Prognosis of Oral Squamous Cell Carcinoma Correlates With ITGA6.
    Zhang C; Cai Q; Ke J
    Int Dent J; 2023 Apr; 73(2):178-185. PubMed ID: 35820930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanostars Combined with the Searched Antibody for Targeted Oral Squamous Cell Carcinoma Therapy.
    Cai L; Wang Y; Peng X; Li W; Yuan Y; Tao X; Yao X; Lv R
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2664-2675. PubMed ID: 35603744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 4-gene signature model simultaneously predicting malignant risk of oral potentially malignant disorders and oral squamous cell carcinoma prognosis.
    Zhang X; Yang M; Liu Y; Liu H; Yang J; Luo J; Zhou H
    Arch Oral Biol; 2021 Sep; 129():105203. PubMed ID: 34252587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.