BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34713541)

  • 1. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context.
    Iltis C; Tougeron K; Hance T; Louâpre P; Foray V
    Environ Microbiol; 2022 Jan; 24(1):18-29. PubMed ID: 34713541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of heat stress on the fitness outcomes of symbiotic infection in aphids: a meta-analysis.
    Tougeron K; Iltis C
    Proc Biol Sci; 2022 Mar; 289(1971):20212660. PubMed ID: 35350854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endosymbiont-Mediated Adaptive Responses to Stress in Holobionts.
    Ye S; Siemann E
    Results Probl Cell Differ; 2020; 69():559-580. PubMed ID: 33263887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta.
    Noer NK; Pagter M; Bahrndorff S; Malmendal A; Kristensen TN
    PLoS One; 2020; 15(10):e0237201. PubMed ID: 33119606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary responses of mutualistic insect-bacterial symbioses in a world of fluctuating temperatures.
    Renoz F; Pons I; Hance T
    Curr Opin Insect Sci; 2019 Oct; 35():20-26. PubMed ID: 31302355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal plasticity of a freshwater cnidarian holobiont: detection of trans-generational effects in asexually reproducing hosts and symbionts.
    Ye S; Badhiwala KN; Robinson JT; Cho WH; Siemann E
    ISME J; 2019 Aug; 13(8):2058-2067. PubMed ID: 31015561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bark beetle holobiont: why microbes matter.
    Six DL
    J Chem Ecol; 2013 Jul; 39(7):989-1002. PubMed ID: 23846183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures.
    Kunze C; Luijckx P; Jackson AL; Donohue I
    Elife; 2022 Feb; 11():. PubMed ID: 35164901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonal Plants as Meta-Holobionts.
    Vannier N; Mony C; Bittebiere AK; Theis KR; Rosenberg E; Vandenkoornhuyse P
    mSystems; 2019; 4(2):. PubMed ID: 30944875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutualism meltdown in insects: bacteria constrain thermal adaptation.
    Wernegreen JJ
    Curr Opin Microbiol; 2012 Jun; 15(3):255-62. PubMed ID: 22381679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U; Tingley R; Kearney MR; Sacco M; Palacio AS; Tejedo M; Nicieza AG
    J Anim Ecol; 2020 Jul; 89(7):1722-1734. PubMed ID: 32221971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Tolerance in Green Hydra: Identifying the Roles of Algal Endosymbionts and Hosts in a Freshwater Holobiont Under Stress.
    Ye S; Bhattacharjee M; Siemann E
    Microb Ecol; 2019 Feb; 77(2):537-545. PubMed ID: 30613848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.
    Fujita K; Okai T; Hosono T
    PLoS One; 2014; 9(3):e90304. PubMed ID: 24594773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A community perspective on the concept of marine holobionts: current status, challenges, and future directions.
    Dittami SM; Arboleda E; Auguet JC; Bigalke A; Briand E; Cárdenas P; Cardini U; Decelle J; Engelen AH; Eveillard D; Gachon CMM; Griffiths SM; Harder T; Kayal E; Kazamia E; Lallier FH; Medina M; Marzinelli EM; Morganti TM; Núñez Pons L; Prado S; Pintado J; Saha M; Selosse MA; Skillings D; Stock W; Sunagawa S; Toulza E; Vorobev A; Leblanc C; Not F
    PeerJ; 2021; 9():e10911. PubMed ID: 33665032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates.
    Kingsolver JG; Woods HA
    Am Nat; 2016 Mar; 187(3):283-94. PubMed ID: 26913942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infochemicals in terrestrial plants and seaweed holobionts: current and future trends.
    Schmidt R; Saha M
    New Phytol; 2021 Feb; 229(4):1852-1860. PubMed ID: 32984975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survive a Warming Climate: Insect Responses to Extreme High Temperatures.
    Ma CS; Ma G; Pincebourde S
    Annu Rev Entomol; 2021 Jan; 66():163-184. PubMed ID: 32870704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.