These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34713667)

  • 21. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time Neural Connectivity Inference with Presynaptic Spike-driven Spike Timing-Dependent Plasticity.
    Kim D; Choi J; Cheon M; Jeong Y; Kim J; Kwak JY; Park JK; Lee S; Kim I; Park J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing.
    Yang S; Wang J; Deng B; Azghadi MR; Linares-Barranco B
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7126-7140. PubMed ID: 34115596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuromorphic Tactile Edge Orientation Classification in an Unsupervised Spiking Neural Network.
    Macdonald FLA; Lepora NF; Conradt J; Ward-Cherrier B
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
    Vanarse A; Espinosa-Ramos JI; Osseiran A; Rassau A; Kasabov N
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing Primitive of Fully VCSEL-Based All-Optical Spiking Neural Network for Supervised Learning and Pattern Classification.
    Xiang S; Ren Z; Song Z; Zhang Y; Guo X; Han G; Hao Y
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2494-2505. PubMed ID: 32673197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle.
    Bing Z; Meschede C; Chen G; Knoll A; Huang K
    Neural Netw; 2020 Jan; 121():21-36. PubMed ID: 31526952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supervised Learning Algorithm for Multilayer Spiking Neural Networks with Long-Term Memory Spike Response Model.
    Lin X; Zhang M; Wang X
    Comput Intell Neurosci; 2021; 2021():8592824. PubMed ID: 34868299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic Spatiotemporal Pattern Recognition With Recurrent Spiking Neural Network.
    Shen J; Liu JK; Wang Y
    Neural Comput; 2021 Oct; 33(11):2971-2995. PubMed ID: 34474470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns.
    She X; Dash S; Kim D; Mukhopadhyay S
    Front Neurosci; 2020; 14():615756. PubMed ID: 33519366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neuromorphic network for generic multivariate data classification.
    Schmuker M; Pfeil T; Nawrot MP
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2081-6. PubMed ID: 24469794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Memristor-based spiking neural network with online reinforcement learning.
    Vlasov D; Minnekhanov A; Rybka R; Davydov Y; Sboev A; Serenko A; Ilyasov A; Demin V
    Neural Netw; 2023 Sep; 166():512-523. PubMed ID: 37579580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.