These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34713802)

  • 1. The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity.
    Sauvola CW; Akbergenova Y; Cunningham KL; Aponte-Santiago NA; Littleton JT
    Elife; 2021 Oct; 10():. PubMed ID: 34713802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in
    Aponte-Santiago NA; Ormerod KG; Akbergenova Y; Littleton JT
    J Neurosci; 2020 Aug; 40(33):6270-6288. PubMed ID: 32631939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Partitioning of Synaptic Vesicle Pools by the SNARE-Binding Protein Tomosyn.
    Cazares VA; Njus MM; Manly A; Saldate JJ; Subramani A; Ben-Simon Y; Sutton MA; Ashery U; Stuenkel EL
    J Neurosci; 2016 Nov; 36(44):11208-11222. PubMed ID: 27807164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release.
    Sakisaka T; Yamamoto Y; Mochida S; Nakamura M; Nishikawa K; Ishizaki H; Okamoto-Tanaka M; Miyoshi J; Fujiyoshi Y; Manabe T; Takai Y
    J Cell Biol; 2008 Oct; 183(2):323-37. PubMed ID: 18936251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons.
    He K; Han Y; Li X; Hernandez RX; Riboul DV; Feghhi T; Justs KA; Mahneva O; Perry S; Macleod GT; Dickman D
    J Neurosci; 2023 Jun; 43(25):4598-4611. PubMed ID: 37221096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapin is critical for presynaptic homeostatic plasticity.
    Dickman DK; Tong A; Davis GW
    J Neurosci; 2012 Jun; 32(25):8716-24. PubMed ID: 22723711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms determining conserved properties of short-term synaptic depression revealed in NSF and SNAP-25 conditional mutants.
    Kawasaki F; Ordway RW
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14658-63. PubMed ID: 19706552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Properties and Plasticity Mechanisms of Invertebrate Tonic and Phasic Neurons.
    Aponte-Santiago NA; Littleton JT
    Front Physiol; 2020; 11():611982. PubMed ID: 33391026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in
    Park S; Bin NR; Yu B; Wong R; Sitarska E; Sugita K; Ma K; Xu J; Tien CW; Algouneh A; Turlova E; Wang S; Siriya P; Shahid W; Kalia L; Feng ZP; Monnier PP; Sun HS; Zhen M; Gao S; Rizo J; Sugita S
    J Neurosci; 2017 Sep; 37(36):8797-8815. PubMed ID: 28821673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-ethylmaleimide-sensitive factor and dysbindin interact to modulate synaptic plasticity.
    Gokhale A; Mullin AP; Zlatic SA; Easley CA; Merritt ME; Raj N; Larimore J; Gordon DE; Peden AA; Sanyal S; Faundez V
    J Neurosci; 2015 May; 35(19):7643-53. PubMed ID: 25972187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation.
    Li X; Goel P; Chen C; Angajala V; Chen X; Dickman DK
    Elife; 2018 Apr; 7():. PubMed ID: 29620520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal intramolecular interactions of tomosyn control its inhibitory activity on SNARE complex formation.
    Yamamoto Y; Mochida S; Kurooka T; Sakisaka T
    J Biol Chem; 2009 May; 284(18):12480-90. PubMed ID: 19258327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N- and C-terminal domains of tomosyn play distinct roles in soluble N-ethylmaleimide-sensitive factor attachment protein receptor binding and fusion regulation.
    Yu H; Rathore SS; Gulbranson DR; Shen J
    J Biol Chem; 2014 Sep; 289(37):25571-80. PubMed ID: 25063806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Tomosyn in the Regulation of Neurotransmitter Release.
    Chow CH; Huang M; Sugita S
    Adv Neurobiol; 2023; 33():233-254. PubMed ID: 37615869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity.
    Ben-Simon Y; Rodenas-Ruano A; Alviña K; Lam AD; Stuenkel EL; Castillo PE; Ashery U
    Cell Rep; 2015 Jul; 12(3):396-404. PubMed ID: 26166572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of developmental and molecular factors underlying release heterogeneity at
    Akbergenova Y; Cunningham KL; Zhang YV; Weiss S; Littleton JT
    Elife; 2018 Jul; 7():. PubMed ID: 29989549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of homeostatic plasticity at the
    James TD; Zwiefelhofer DJ; Frank CA
    Elife; 2019 Jun; 8():. PubMed ID: 31180325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-wide Induction and Synapse Type-Specific Robustness of Presynaptic Homeostasis.
    Genç Ö; Davis GW
    Curr Biol; 2019 Nov; 29(22):3863-3873.e2. PubMed ID: 31708391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Neurexin/N-Ethylmaleimide-sensitive Factor (NSF) Interaction Regulates Short Term Synaptic Depression.
    Li T; Tian Y; Li Q; Chen H; Lv H; Xie W; Han J
    J Biol Chem; 2015 Jul; 290(29):17656-17667. PubMed ID: 25953899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the
    Wang Y; Lobb-Rabe M; Ashley J; Anand V; Carrillo RA
    J Neurosci; 2021 Feb; 41(7):1401-1417. PubMed ID: 33402422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.