BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34714051)

  • 1. Strategic Carbon Dioxide Infrastructure to Achieve a Low-Carbon Power Sector in the Midwestern and South-Central United States.
    Tao Y; Edwards RWJ; Mauzerall DL; Celia MA
    Environ Sci Technol; 2021 Nov; 55(22):15013-15024. PubMed ID: 34714051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic feasibility and policy incentive analysis of Carbon Capture, Utilization, and Storage (CCUS) in coal-fired power plants based on system dynamics.
    Ye J; Yan L; Liu X; Wei F
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37487-37515. PubMed ID: 36572778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology.
    Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X
    Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants.
    Psarras P; He J; Pilorgé H; McQueen N; Jensen-Fellows A; Kian K; Wilcox J
    Environ Sci Technol; 2020 May; 54(10):6272-6280. PubMed ID: 32329614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector.
    Dindi A; Coddington K; Garofalo JF; Wu W; Zhai H
    Environ Sci Technol; 2022 Jul; 56(14):9872-9881. PubMed ID: 35785993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.
    Zhai H; Ou Y; Rubin ES
    Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits.
    Anderson JJ; Rode DC; Zhai H; Fischbeck PS
    Environ Sci Technol; 2022 Aug; 56(16):11162-11171. PubMed ID: 35926127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States.
    Edwards RWJ; Celia MA
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):E8815-E8824. PubMed ID: 30181267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-term implications of a ban on new coal-fired power plants in the United States.
    Newcomer A; Apt J
    Environ Sci Technol; 2009 Jun; 43(11):3995-4001. PubMed ID: 19569321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Options for near-term phaseout of CO(2) emissions from coal use in the United States.
    Kharecha PA; Kutscher CF; Hansen JE; Mazria E
    Environ Sci Technol; 2010 Jun; 44(11):4050-62. PubMed ID: 20429611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States.
    Schmelz WJ; Hochman G; Miller KG
    Interface Focus; 2020 Oct; 10(5):20190065. PubMed ID: 32832064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Zero/Negative-Emissions Coal-Fired Power Plants Using Amine-Based Postcombustion CO
    Jiang K; Feron P; Cousins A; Zhai R; Li K
    Environ Sci Technol; 2020 Feb; 54(4):2429-2438. PubMed ID: 31990528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-carbon trade-off in China's coal power industry.
    Zhang C; Anadon LD; Mo H; Zhao Z; Liu Z
    Environ Sci Technol; 2014 Oct; 48(19):11082-9. PubMed ID: 25215622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A state-of-the-art review of CO
    Jiang S; Li Y; Wang F; Sun H; Wang H; Yao Z
    Environ Res; 2022 Jul; 210():112986. PubMed ID: 35192806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target.
    Tong D; Zhang Q; Zheng Y; Caldeira K; Shearer C; Hong C; Qin Y; Davis SJ
    Nature; 2019 Aug; 572(7769):373-377. PubMed ID: 31261374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States.
    Tavakkoli S; Feng L; Miller SM; Jordaan SM
    Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.
    Zhai H; Rubin ES
    Environ Sci Technol; 2016 Apr; 50(7):4127-34. PubMed ID: 26967583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.