These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34714256)

  • 1. Robust learning-based x-ray image denoising-potential pitfalls, their analysis and solutions.
    Hariharan SG; Kaethner C; Strobel N; Kowarschik M; Fahrig R; Navab N
    Biomed Phys Eng Express; 2022 Apr; 8(3):. PubMed ID: 34714256
    [No Abstract]   [Full Text] [Related]  

  • 2. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-learning-based denoising of X-ray differential phase and dark-field images.
    Ren K; Gu Y; Luo M; Chen H; Wang Z
    Eur J Radiol; 2023 Jun; 163():110835. PubMed ID: 37098281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge-enhancement densenet for X-ray fluoroscopy image denoising in cardiac electrophysiology procedures.
    Luo Y; Ma Y; O' Brien H; Jiang K; Kohli V; Maidelin S; Saeed M; Deng E; Pushparajah K; Rhode KS
    Med Phys; 2022 Feb; 49(2):1262-1275. PubMed ID: 34954836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denoising of polychromatic CT images based on their own noise properties.
    Kim JH; Chang Y; Ra JB
    Med Phys; 2016 May; 43(5):2251. PubMed ID: 27147337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising.
    Wang J; Tang Y; Wu Z; Du Q; Yao L; Yang X; Li M; Zheng J
    Comput Med Imaging Graph; 2023 Jul; 107():102237. PubMed ID: 37116340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography.
    Kulathilake KASH; Abdullah NA; Bandara AMRR; Lai KW
    J Healthc Eng; 2021; 2021():9975762. PubMed ID: 34552709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RESEARCH PROGRESS OF DEEP LEARNING IN LOW-DOSE CT IMAGE DENOISING.
    Zhang F; Liu J; Liu Y; Zhang X
    Radiat Prot Dosimetry; 2023 Mar; 199(4):337-346. PubMed ID: 36588464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A denoising model based on multi-agent reinforcement learning with data transformation for digital tomosynthesis.
    Nam K; Lee D; Lee S
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37192630
    [No Abstract]   [Full Text] [Related]  

  • 16. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
    Xu W; Mueller K
    Med Phys; 2012 Aug; 39(8):4748-60. PubMed ID: 22894400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary results of DSA denoising based on a weighted low-rank approach using an advanced neurovascular replication system.
    Hariharan SG; Kaethner C; Strobel N; Kowarschik M; DiNitto J; Albarqouni S; Fahrig R; Navab N
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1117-1126. PubMed ID: 30977093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT.
    Manduca A; Yu L; Trzasko JD; Khaylova N; Kofler JM; McCollough CM; Fletcher JG
    Med Phys; 2009 Nov; 36(11):4911-9. PubMed ID: 19994500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise2Void: unsupervised denoising of PET images.
    Song TA; Yang F; Dutta J
    Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.