These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34714316)
1. The Dirac cone in two-dimensional tetragonal silicon carbides: a ring coupling mechanism. Kong W; Xiao X; Xu W; Wang R; Gan LY; Wei J; Fan J; Wu X Nanoscale; 2021 Nov; 13(43):18267-18272. PubMed ID: 34714316 [TBL] [Abstract][Full Text] [Related]
2. Dirac cones in bipartite square-octagon lattice: A theoretical approach. He J; Liu Z J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522410 [TBL] [Abstract][Full Text] [Related]
3. Square transition-metal carbides MC Liu PF; Wu Y; Bo T; Hou L; Xu J; Zhang HJ; Wang BT Phys Chem Chem Phys; 2018 Jan; 20(2):732-737. PubMed ID: 29242875 [TBL] [Abstract][Full Text] [Related]
4. Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study. Qin X; Liu Y; Li X; Xu J; Chi B; Zhai D; Zhao X J Phys Chem Lett; 2015 Apr; 6(8):1333-9. PubMed ID: 26263132 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system. Feng Y; Liu D; Feng B; Liu X; Zhao L; Xie Z; Liu Y; Liang A; Hu C; Hu Y; He S; Liu G; Zhang J; Chen C; Xu Z; Chen L; Wu K; Liu YT; Lin H; Huang ZQ; Hsu CH; Chuang FC; Bansil A; Zhou XJ Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14656-14661. PubMed ID: 27930314 [TBL] [Abstract][Full Text] [Related]
6. A new Dirac cone material: a graphene-like Be Wang B; Yuan S; Li Y; Shi L; Wang J Nanoscale; 2017 May; 9(17):5577-5582. PubMed ID: 28406258 [TBL] [Abstract][Full Text] [Related]
7. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones. Wang S; Wu D; Yang B; Ruckenstein E; Chen H Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453 [TBL] [Abstract][Full Text] [Related]
8. A series of two-dimensional carbon allotropes with Dirac cone structure. Wang GX Phys Chem Chem Phys; 2023 Jun; 25(23):15815-15821. PubMed ID: 37254773 [TBL] [Abstract][Full Text] [Related]
9. Azugraphene: a new graphene-like hexagonal carbon allotrope with Dirac cones. Liu J; Lu H RSC Adv; 2019 Oct; 9(59):34481-34485. PubMed ID: 35529997 [TBL] [Abstract][Full Text] [Related]
10. A New Anisotropic Dirac Cone Material: A B Zhao Y; Li X; Liu J; Zhang C; Wang Q J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891 [TBL] [Abstract][Full Text] [Related]
11. Origins of Dirac cone formation in AB Qin X; Wu Y; Liu Y; Chi B; Li X; Wang Y; Zhao X Sci Rep; 2017 Sep; 7(1):10546. PubMed ID: 28874708 [TBL] [Abstract][Full Text] [Related]
12. Band Gap Characters and Ferromagnetic/Antiferromagnetic Coupling in Group-IV Monolayers Tuned by Chemical Species and Hydrogen Adsorption Configurations. Yu WZ; Yan JA; Gao SP Nanoscale Res Lett; 2015 Dec; 10(1):1040. PubMed ID: 26334543 [TBL] [Abstract][Full Text] [Related]
13. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides. Yang C; Xie Y; Liu LM; Chen Y Phys Chem Chem Phys; 2015 May; 17(17):11211-6. PubMed ID: 25830175 [TBL] [Abstract][Full Text] [Related]
14. Dirac cones in a snub trihexagonal tiling lattice with reflective symmetry breaking. Yang B; Zhang X; Wang A; Zhao M J Phys Condens Matter; 2019 Apr; 31(15):155001. PubMed ID: 30677002 [TBL] [Abstract][Full Text] [Related]
15. Strain-Tuned Topological Insulator and Rashba-Induced Anisotropic Momentum-Locked Dirac Cones in Two-Dimensional SeTe Monolayers. Lyu JK; Ji WX; Zhang SF; Zhang CW; Wang PJ ACS Appl Mater Interfaces; 2018 Dec; 10(50):43962-43969. PubMed ID: 30474373 [TBL] [Abstract][Full Text] [Related]
16. Spawning rings of exceptional points out of Dirac cones. Zhen B; Hsu CW; Igarashi Y; Lu L; Kaminer I; Pick A; Chua SL; Joannopoulos JD; Soljačić M Nature; 2015 Sep; 525(7569):354-8. PubMed ID: 26352476 [TBL] [Abstract][Full Text] [Related]
17. A novel SiO monolayer with a negative Poisson's ratio and Dirac semimetal properties. Du H; Li G; Chen J; Lv Z; Chen Y; Liu S Phys Chem Chem Phys; 2020 Sep; 22(35):20107-20113. PubMed ID: 32936133 [TBL] [Abstract][Full Text] [Related]
18. Mirror symmetry origin of Dirac cone formation in rectangular two-dimensional materials. Qin X; Liu Y; Yang G; Zhao D Phys Chem Chem Phys; 2020 Mar; 22(12):6619-6625. PubMed ID: 32159548 [TBL] [Abstract][Full Text] [Related]
19. Tunable Dirac cones in two-dimensional acoustic metamaterials with matryoshka structure. Chen M; Xu W; Liu Y; Zhang M; Pei D; Jiang H; Wang Y J Acoust Soc Am; 2019 Jul; 146(1):767. PubMed ID: 31370594 [TBL] [Abstract][Full Text] [Related]
20. Non-Hermitian effective medium theory and complex Dirac-like cones. Luo L; Shao Y; Li J; Fan R; Peng R; Wang M; Luo J; Lai Y Opt Express; 2021 May; 29(10):14345-14353. PubMed ID: 33985157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]