These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34714554)

  • 1. Mouse-INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy.
    Hong Y; Limback D; Elsarraj HS; Harper H; Haines H; Hansford H; Ricci M; Kaufman C; Wedlock E; Xu M; Zhang J; May L; Cusick T; Inciardi M; Redick M; Gatewood J; Winblad O; Aripoli A; Huppe A; Balanoff C; Wagner JL; Amin AL; Larson KE; Ricci L; Tawfik O; Razek H; Meierotto RO; Madan R; Godwin AK; Thompson J; Hilsenbeck SG; Futreal A; Thompson A; Hwang ES; Fan F; Behbod F;
    J Pathol; 2022 Feb; 256(2):186-201. PubMed ID: 34714554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model.
    Valdez KE; Fan F; Smith W; Allred DC; Medina D; Behbod F
    J Pathol; 2011 Dec; 225(4):565-73. PubMed ID: 22025213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.
    Elsarraj HS; Hong Y; Valdez KE; Michaels W; Hook M; Smith WP; Chien J; Herschkowitz JI; Troester MA; Beck M; Inciardi M; Gatewood J; May L; Cusick T; McGinness M; Ricci L; Fan F; Tawfik O; Marks JR; Knapp JR; Yeh HW; Thomas P; Carrasco DR; Fields TA; Godwin AK; Behbod F
    Breast Cancer Res; 2015 Sep; 17():128. PubMed ID: 26384318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion.
    Duivenvoorden HM; Rautela J; Edgington-Mitchell LE; Spurling A; Greening DW; Nowell CJ; Molloy TJ; Robbins E; Brockwell NK; Lee CS; Chen M; Holliday A; Selinger CI; Hu M; Britt KL; Stroud DA; Bogyo M; Möller A; Polyak K; Sloane BF; O'Toole SA; Parker BS
    J Pathol; 2017 Dec; 243(4):496-509. PubMed ID: 29086922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraductal patient-derived xenografts of estrogen receptor α-positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions.
    Fiche M; Scabia V; Aouad P; Battista L; Treboux A; Stravodimou A; Zaman K; ; Dormoy V; Ayyanan A; Sflomos G; Brisken C
    J Pathol; 2019 Mar; 247(3):287-292. PubMed ID: 30430577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer.
    Lee S; Stewart S; Nagtegaal I; Luo J; Wu Y; Colditz G; Medina D; Allred DC
    Cancer Res; 2012 Sep; 72(17):4574-86. PubMed ID: 22751464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparable cancer-relevant mutation profiles in synchronous ductal carcinoma in situ and invasive breast cancer.
    Bergholtz H; Kumar S; Wärnberg F; Lüders T; Kristensen V; Sørlie T
    Cancer Rep (Hoboken); 2020 Jun; 3(3):e1248. PubMed ID: 32671987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression.
    Hutten SJ; de Bruijn R; Lutz C; Badoux M; Eijkman T; Chao X; Ciwinska M; Sheinman M; Messal H; Herencia-Ropero A; Kristel P; Mulder L; van der Waal R; Sanders J; Almekinders MM; Llop-Guevara A; Davies HR; van Haren MJ; Martin NI; Behbod F; Nik-Zainal S; Serra V; van Rheenen J; Lips EH; Wessels LFA; ; Wesseling J; Scheele CLGJ; Jonkers J
    Cancer Cell; 2023 May; 41(5):986-1002.e9. PubMed ID: 37116492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG.
    Krstic M; Kolendowski B; Cecchini MJ; Postenka CO; Hassan HM; Andrews J; MacMillan CD; Williams KC; Leong HS; Brackstone M; Torchia J; Chambers AF; Tuck AB
    J Pathol; 2019 Jun; 248(2):191-203. PubMed ID: 30697731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.
    Khurana A; McKean H; Kim H; Kim SH; mcguire J; Roberts LR; Goetz MP; Shridhar V
    Breast Cancer Res; 2012 Mar; 14(2):R43. PubMed ID: 22410125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma
    Lo PK; Zhang Y; Yao Y; Wolfson B; Yu J; Han SY; Duru N; Zhou Q
    J Biol Chem; 2017 Jul; 292(27):11466-11484. PubMed ID: 28512126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic expression of PLC-β2 in non-invasive breast tumor cells plays a protective role against malignant progression and is correlated with the deregulation of miR-146a.
    Bertagnolo V; Grassilli S; Volinia S; Al-Qassab Y; Brugnoli F; Vezzali F; Lambertini E; Palomba M; Piubello Q; Orvieto E; Natali C; Piva R; Croce CM; Capitani S
    Mol Carcinog; 2019 May; 58(5):708-721. PubMed ID: 30582225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMARCE1 is required for the invasive progression of in situ cancers.
    Sokol ES; Feng YX; Jin DX; Tizabi MD; Miller DH; Cohen MA; Sanduja S; Reinhardt F; Pandey J; Superville DA; Jaenisch R; Gupta PB
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4153-4158. PubMed ID: 28377514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β1-Integrin via NF-κB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer.
    Nam JM; Ahmed KM; Costes S; Zhang H; Onodera Y; Olshen AB; Hatanaka KC; Kinoshita R; Ishikawa M; Sabe H; Shirato H; Park CC
    Breast Cancer Res; 2013; 15(4):R60. PubMed ID: 23883667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic activation of SOX11 is associated with recurrence and progression of ductal carcinoma in situ to invasive breast cancer.
    Treekitkarnmongkol W; Shah V; Kai K; Katayama H; Wong J; Ladha FA; Nguyen T; Menegaz B; Lu W; Yang F; Mino B; Tang X; Gagea M; Batra H; Raso MG; Wistuba II; Krishnamurthy S; Pinder SE; Sawyer EJ; Thompson AM; Sen S
    Br J Cancer; 2024 Jul; 131(1):171-183. PubMed ID: 38760444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup.
    Shekhar MP; Kato I; Nangia-Makker P; Tait L
    Oncotarget; 2013 Feb; 4(2):231-41. PubMed ID: 23548208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression.
    Russell TD; Jindal S; Agunbiade S; Gao D; Troxell M; Borges VF; Schedin P
    Am J Pathol; 2015 Nov; 185(11):3076-89. PubMed ID: 26343330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The retinoblastoma tumor suppressor pathway modulates the invasiveness of ErbB2-positive breast cancer.
    Witkiewicz AK; Cox DW; Rivadeneira D; Ertel AE; Fortina P; Schwartz GF; Knudsen ES
    Oncogene; 2014 Jul; 33(30):3980-91. PubMed ID: 24121271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PIK3CA mutations in ductal carcinoma in situ and adjacent invasive breast cancer.
    Agahozo MC; Sieuwerts AM; Doebar SC; Verhoef EI; Beaufort CM; Ruigrok-Ritstier K; de Weerd V; Sleddens HFBM; Dinjens WNM; Martens JWM; van Deurzen CHM
    Endocr Relat Cancer; 2019 May; 26(5):471-482. PubMed ID: 30844755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers.
    Schultz S; Bartsch H; Sotlar K; Petat-Dutter K; Bonin M; Kahlert S; Harbeck N; Vogel U; Seeger H; Fehm T; Neubauer HJ
    BMC Med Genomics; 2018 Sep; 11(1):80. PubMed ID: 30236106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.