These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34715337)
1. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related]
2. Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane. Sim YB; Jung JH; Park JH; Bakonyi P; Kim SH Bioresour Technol; 2020 Jul; 308():123265. PubMed ID: 32272390 [TBL] [Abstract][Full Text] [Related]
3. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. Sim YB; Jung JH; Baik JH; Park JH; Kumar G; Rajesh Banu J; Kim SH Bioresour Technol; 2021 Nov; 340():125562. PubMed ID: 34325392 [TBL] [Abstract][Full Text] [Related]
4. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Zagrodnik R; Duber A; Seifert K Bioresour Technol; 2022 Aug; 358():127309. PubMed ID: 35569715 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. Jung JH; Sim YB; Ko J; Park SY; Kim GB; Kim SH Bioresour Technol; 2022 May; 352():127094. PubMed ID: 35367325 [TBL] [Abstract][Full Text] [Related]
6. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
7. Enhanced continuous biohydrogen production using dynamic membrane with conductive biofilm supporter. Yang J; Sim YB; Moon Kim S; Joo HH; Jung JH; Kim SH Bioresour Technol; 2023 Jun; 377():128900. PubMed ID: 36933573 [TBL] [Abstract][Full Text] [Related]
8. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
9. Biohydrogen production from glucose using submerged dynamic filtration module: Metabolic product distribution and flux-based analysis. Anburajan P; Park JH; Pugazhendhi A; Kim JS; Kim SH Bioresour Technol; 2019 Sep; 287():121445. PubMed ID: 31113707 [TBL] [Abstract][Full Text] [Related]
10. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024 [TBL] [Abstract][Full Text] [Related]
11. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
13. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326 [TBL] [Abstract][Full Text] [Related]
14. High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position. Chu CY; Zheng JL; Chen TH; Bhuyar P Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299912 [TBL] [Abstract][Full Text] [Related]
15. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Jung JH; Sim YB; Baik JH; Park JH; Kim SH Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682 [TBL] [Abstract][Full Text] [Related]
16. Kinetic modeling and microbial community analysis for high-rate biohydrogen production using a dynamic membrane. Park JH; Sim YB; Kumar G; Anburajan P; Park JH; Park HD; Kim SH Bioresour Technol; 2018 Aug; 262():59-64. PubMed ID: 29698838 [TBL] [Abstract][Full Text] [Related]
17. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture. Qiu C; Shi P; Xiao S; Sun L World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340 [TBL] [Abstract][Full Text] [Related]
18. Biohydrogen production at pH below 3.0: Is it possible? Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503 [TBL] [Abstract][Full Text] [Related]
19. Continuous dark and photo biohydrogen production in a baffled bioreactor and electrons distribution analysis. Li Y; Zhang Z; Jiang D; Jing Y; Lu C; Zhang H; Zhang Q Bioresour Technol; 2021 Oct; 337():125440. PubMed ID: 34166932 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Dessì P; Lakaniemi AM; Lens PNL Water Res; 2017 May; 115():120-129. PubMed ID: 28273442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]