BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34715337)

  • 1. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor.
    Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH
    Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shear velocity on dark fermentation for biohydrogen production using dynamic membrane.
    Sim YB; Jung JH; Park JH; Bakonyi P; Kim SH
    Bioresour Technol; 2020 Jul; 308():123265. PubMed ID: 32272390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass.
    Sim YB; Jung JH; Baik JH; Park JH; Kumar G; Rajesh Banu J; Kim SH
    Bioresour Technol; 2021 Nov; 340():125562. PubMed ID: 34325392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions.
    Zagrodnik R; Duber A; Seifert K
    Bioresour Technol; 2022 Aug; 358():127309. PubMed ID: 35569715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system.
    Jung JH; Sim YB; Ko J; Park SY; Kim GB; Kim SH
    Bioresour Technol; 2022 May; 352():127094. PubMed ID: 35367325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced continuous biohydrogen production using dynamic membrane with conductive biofilm supporter.
    Yang J; Sim YB; Moon Kim S; Joo HH; Jung JH; Kim SH
    Bioresour Technol; 2023 Jun; 377():128900. PubMed ID: 36933573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste.
    Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I
    Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biohydrogen production from glucose using submerged dynamic filtration module: Metabolic product distribution and flux-based analysis.
    Anburajan P; Park JH; Pugazhendhi A; Kim JS; Kim SH
    Bioresour Technol; 2019 Sep; 287():121445. PubMed ID: 31113707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production.
    Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH
    Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies.
    Lo YC; Chen WM; Hung CH; Chen SD; Chang JS
    Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose.
    Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH
    Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position.
    Chu CY; Zheng JL; Chen TH; Bhuyar P
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome.
    Jung JH; Sim YB; Baik JH; Park JH; Kim SH
    Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling and microbial community analysis for high-rate biohydrogen production using a dynamic membrane.
    Park JH; Sim YB; Kumar G; Anburajan P; Park JH; Park HD; Kim SH
    Bioresour Technol; 2018 Aug; 262():59-64. PubMed ID: 29698838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.
    Qiu C; Shi P; Xiao S; Sun L
    World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen production at pH below 3.0: Is it possible?
    Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M
    Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous dark and photo biohydrogen production in a baffled bioreactor and electrons distribution analysis.
    Li Y; Zhang Z; Jiang D; Jing Y; Lu C; Zhang H; Zhang Q
    Bioresour Technol; 2021 Oct; 337():125440. PubMed ID: 34166932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C.
    Dessì P; Lakaniemi AM; Lens PNL
    Water Res; 2017 May; 115():120-129. PubMed ID: 28273442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.