These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34715636)

  • 1. Precision-porous polyurethane elastomers engineered for application in pro-healing vascular grafts: Synthesis, fabrication and detailed biocompatibility assessment.
    Zhen L; Creason SA; Simonovsky FI; Snyder JM; Lindhartsen SL; Mecwan MM; Johnson BW; Himmelfarb J; Ratner BD
    Biomaterials; 2021 Dec; 279():121174. PubMed ID: 34715636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
    Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA
    Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.
    Wang YF; Barrera CM; Dauer EA; Gu W; Andreopoulos F; Huang CC
    J Mech Behav Biomed Mater; 2017 Jan; 65():657-664. PubMed ID: 27741496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications.
    McBane JE; Sharifpoor S; Cai K; Labow RS; Santerre JP
    Biomaterials; 2011 Sep; 32(26):6034-44. PubMed ID: 21641638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Assessment of the mechanical properties and biocompatibility of a new electrospun polyurethane vascular prosthesis].
    He W; Hu ZJ; Xu AW; Yin HH; Wang JS; Ye JL; Wang SM
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2006-11. PubMed ID: 22200701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastomeric PGS scaffolds in arterial tissue engineering.
    Lee KW; Wang Y
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of Electrospun Bi-Hybrid PU/PET Scaffolds for Small-Diameter Vascular Grafts Applications.
    Khodadoust M; Mohebbi-Kalhori D; Jirofti N
    Cardiovasc Eng Technol; 2018 Mar; 9(1):73-83. PubMed ID: 29196952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering.
    Mostafavi A; Daemi H; Rajabi S; Baharvand H
    Carbohydr Polym; 2021 Apr; 257():117632. PubMed ID: 33541658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry.
    Ding X; Gao J; Acharya AP; Wu YL; Little SR; Wang Y
    ACS Biomater Sci Eng; 2020 Feb; 6(2):852-864. PubMed ID: 33464838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering.
    Yang J; Motlagh D; Webb AR; Ameer GA
    Tissue Eng; 2005; 11(11-12):1876-86. PubMed ID: 16411834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation and characterization of a porous, elastomeric biomaterial for vocal fold tissue engineering research.
    Gaston J; Bartlett RS; Klemuk SA; Thibeault SL
    Ann Otol Rhinol Laryngol; 2014 Dec; 123(12):866-74. PubMed ID: 24944281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation and performance of a new polyurethane vascular prosthesis.
    He W; Hu Z; Xu A; Liu R; Yin H; Wang J; Wang S
    Cell Biochem Biophys; 2013 Jul; 66(3):855-66. PubMed ID: 23456453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.
    Grenier S; Sandig M; Mequanint K
    J Biomed Mater Res A; 2007 Sep; 82(4):802-9. PubMed ID: 17326143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of artificial blood vessel suitable for cerebrovascular surgery: improvement in the mechanical properties].
    Miyamoto S
    Nihon Geka Hokan; 1991 Jan; 60(1):25-37. PubMed ID: 1819236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue Ingrowth Markedly Reduces Mechanical Anisotropy and Stiffness in Fibre Direction of Highly Aligned Electrospun Polyurethane Scaffolds.
    Krynauw H; Buescher J; Koehne J; Verrijt L; Limbert G; Davies NH; Bezuidenhout D; Franz T
    Cardiovasc Eng Technol; 2020 Aug; 11(4):456-468. PubMed ID: 32613599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.