BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 34715777)

  • 1. End-to-end learning for compound activity prediction based on binding pocket information.
    Tanebe T; Ishida T
    BMC Bioinformatics; 2021 Oct; 22(Suppl 3):529. PubMed ID: 34715777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Protein-Ligand Docking Structure with Graph Neural Network.
    Jiang H; Wang J; Cong W; Huang Y; Ramezani M; Sarma A; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2022 Jun; 62(12):2923-2932. PubMed ID: 35699430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.
    Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H
    ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening.
    Jastrzębski S; Szymczak M; Pocha A; Mordalski S; Tabor J; Bojarski AJ; Podlewska S
    J Chem Inf Model; 2020 Sep; 60(9):4246-4262. PubMed ID: 32865414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational representations of protein-ligand interfaces for structure-based virtual screening.
    Qin T; Zhu Z; Wang XS; Xia J; Wu S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222
    [No Abstract]   [Full Text] [Related]  

  • 15. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4.
    Wang B; Ng HL
    J Comput Aided Mol Des; 2020 Feb; 34(2):201-217. PubMed ID: 31916049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional neural network scoring and minimization in the D3R 2017 community challenge.
    Sunseri J; King JE; Francoeur PG; Koes DR
    J Comput Aided Mol Des; 2019 Jan; 33(1):19-34. PubMed ID: 29992528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction.
    Nogueira MS; Koch O
    J Chem Inf Model; 2019 Mar; 59(3):1238-1252. PubMed ID: 30802041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.