These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34715914)

  • 1. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra.
    Huber F; van der Burg S; van der Hooft JJJ; Ridder L
    J Cheminform; 2021 Oct; 13(1):84. PubMed ID: 34715914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships.
    Huber F; Ridder L; Verhoeven S; Spaaks JH; Diblen F; Rogers S; van der Hooft JJJ
    PLoS Comput Biol; 2021 Feb; 17(2):e1008724. PubMed ID: 33591968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MS2Query: reliable and scalable MS
    de Jonge NF; Louwen JJR; Chekmeneva E; Camuzeaux S; Vermeir FJ; Jansen RS; Huber F; van der Hooft JJJ
    Nat Commun; 2023 Mar; 14(1):1752. PubMed ID: 36990978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TransExION: a transformer based explainable similarity metric for comparing IONS in tandem mass spectrometry.
    Bui-Thi D; Liu Y; Lippens JL; Laukens K; De Vijlder T
    J Cheminform; 2024 May; 16(1):61. PubMed ID: 38807166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontargeted screening method for detection of illicit adulterants in dietary supplements and herbal medicines using UHPLC-QTOF-MS with fine-tuned Spec2Vec-based spectral similarity and chemical classification filter.
    Sheng Y; Xue Y; Wang J; Liu S; Jiang Y
    J Pharm Biomed Anal; 2024 Feb; 239():115877. PubMed ID: 38039871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast screening and identification of illegal adulteration in dietary supplements and herbal medicines using molecular networking with deep-learning-based similarity algorithms.
    Sheng Y; Xue Y; Wang J; Liu S; Jiang Y
    Anal Bioanal Chem; 2023 Jul; 415(16):3285-3293. PubMed ID: 37119358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products.
    Schollée JE; Schymanski EL; Stravs MA; Gulde R; Thomaidis NS; Hollender J
    J Am Soc Mass Spectrom; 2017 Dec; 28(12):2692-2704. PubMed ID: 28952028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra.
    Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation.
    Xing S; Hu Y; Yin Z; Liu M; Tang X; Fang M; Huan T
    Anal Chem; 2020 Nov; 92(21):14476-14483. PubMed ID: 33076659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra.
    Rogers S; Ong CW; Wandy J; Ernst M; Ridder L; van der Hooft JJJ
    Faraday Discuss; 2019 Aug; 218(0):284-302. PubMed ID: 31120050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Well Can We Predict Mass Spectra from Structures? Benchmarking Competitive Fragmentation Modeling for Metabolite Identification on Untrained Tandem Mass Spectra.
    Bremer PL; Vaniya A; Kind T; Wang S; Fiehn O
    J Chem Inf Model; 2022 Sep; 62(17):4049-4056. PubMed ID: 36043939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification.
    Narduzzi L; Stanstrup J; Mattivi F; Franceschi P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2145-2157. PubMed ID: 30352003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Driven GC-MS Library Search and Its Application for Metabolomics.
    Matyushin DD; Sholokhova AY; Buryak AK
    Anal Chem; 2020 Sep; 92(17):11818-11825. PubMed ID: 32867500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Families of Spectral Similarity Scores and Their Use Cases for Gas Chromatography-Mass Spectrometry Small Molecule Identification.
    Degnan DJ; Flores JE; Brayfindley ER; Paurus VL; Webb-Robertson BM; Clendinen CS; Bramer LM
    Metabolites; 2023 Oct; 13(10):. PubMed ID: 37887426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian deep learning-based
    Lee HH; Kim H
    Magn Reson Med; 2022 Jul; 88(1):38-52. PubMed ID: 35344604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Learning-Derived Evaluation Metrics Enable Effective Benchmarking of Computational Tools for Phosphopeptide Identification.
    Jiang W; Wen B; Li K; Zeng WF; da Veiga Leprevost F; Moon J; Petyuk VA; Edwards NJ; Liu T; Nesvizhskii AI; Zhang B
    Mol Cell Proteomics; 2021; 20():100171. PubMed ID: 34737085
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.