BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 34716273)

  • 1. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions.
    Kang WB; Bao L; Zhang K; Guo J; Zhu BC; Tang QY; Ren WT; Zhu G
    Soft Matter; 2023 Oct; 19(41):7944-7954. PubMed ID: 37815389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range.
    Tesei G; Lindorff-Larsen K
    Open Res Eur; 2022; 2():94. PubMed ID: 37645312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins.
    Regy RM; Thompson J; Kim YC; Mittal J
    Protein Sci; 2021 Jul; 30(7):1371-1379. PubMed ID: 33934416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
    Chu WT; Wang J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins.
    Dannenhoffer-Lafage T; Best RB
    J Phys Chem B; 2021 Apr; 125(16):4046-4056. PubMed ID: 33876938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation.
    Mammen Regy R; Zheng W; Mittal J
    Methods Enzymol; 2021; 646():1-17. PubMed ID: 33453922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins.
    Dignon GL; Zheng W; Best RB; Kim YC; Mittal J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9929-9934. PubMed ID: 30217894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
    Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M
    Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence determinants of protein phase behavior from a coarse-grained model.
    Dignon GL; Zheng W; Kim YC; Best RB; Mittal J
    PLoS Comput Biol; 2018 Jan; 14(1):e1005941. PubMed ID: 29364893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.