These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34716360)
1. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Zampolli J; Orro A; Manconi A; Ami D; Natalello A; Di Gennaro P Sci Rep; 2021 Oct; 11(1):21311. PubMed ID: 34716360 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic Analysis of Zampolli J; Di Canito A; Manconi A; Milanesi L; Di Gennaro P; Orro A Front Microbiol; 2020; 11():1808. PubMed ID: 32903390 [TBL] [Abstract][Full Text] [Related]
3. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. Di Canito A; Zampolli J; Orro A; D'Ursi P; Milanesi L; Sello G; Steinbüchel A; Di Gennaro P BMC Genomics; 2018 Aug; 19(1):587. PubMed ID: 30081830 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of naphthenic acids: identification of Rhodococcus opacus R7 genes as molecular markers for environmental monitoring and their application in slurry microcosms. Zampolli J; Di Canito A; Cappelletti M; Collina E; Lasagni M; Di Gennaro P Appl Microbiol Biotechnol; 2020 Mar; 104(6):2675-2689. PubMed ID: 31993702 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. Zampolli J; Collina E; Lasagni M; Di Gennaro P AMB Express; 2014; 4():73. PubMed ID: 25401074 [TBL] [Abstract][Full Text] [Related]
6. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance. Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997 [TBL] [Abstract][Full Text] [Related]
7. Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Zampolli J; Vezzini D; Brocca S; Di Gennaro P Front Microbiol; 2023; 14():1284956. PubMed ID: 38235436 [TBL] [Abstract][Full Text] [Related]
8. Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species. Putcha JP; Kitagawa W Microbes Environ; 2024; 39(3):. PubMed ID: 39085141 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomics and Lipidomics of the Environmental Strain Rhodococcus ruber Point out Consumption Pathways and Potential Metabolic Bottlenecks for Polyethylene Degradation. Gravouil K; Ferru-Clément R; Colas S; Helye R; Kadri L; Bourdeau L; Moumen B; Mercier A; Ferreira T Environ Sci Technol; 2017 May; 51(9):5172-5181. PubMed ID: 28345896 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Di Gennaro P; Terreni P; Masi G; Botti S; De Ferra F; Bestetti G Appl Microbiol Biotechnol; 2010 Jun; 87(1):297-308. PubMed ID: 20195856 [TBL] [Abstract][Full Text] [Related]
11. Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. Amouric A; Quéméneur M; Grossi V; Liebgott PP; Auria R; Casalot L J Appl Microbiol; 2010 Jun; 108(6):1903-16. PubMed ID: 19912429 [TBL] [Abstract][Full Text] [Related]
12. Genome-Based Exploration of Zampolli J; Orro A; Vezzini D; Di Gennaro P Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144448 [TBL] [Abstract][Full Text] [Related]
13. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Laczi K; Kis Á; Horváth B; Maróti G; Hegedüs B; Perei K; Rákhely G Appl Microbiol Biotechnol; 2015 Nov; 99(22):9745-59. PubMed ID: 26346267 [TBL] [Abstract][Full Text] [Related]
14. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl. Cheng Y; Zang H; Wang H; Li D; Li C Ecotoxicol Environ Saf; 2018 Aug; 157():111-120. PubMed ID: 29614448 [TBL] [Abstract][Full Text] [Related]
15. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387 [TBL] [Abstract][Full Text] [Related]
16. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Denger K; Ruff J; Schleheck D; Cook AM Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572 [TBL] [Abstract][Full Text] [Related]
17. Biotechnological Potential of Kim D; Choi KY; Yoo M; Zylstra GJ; Kim E J Microbiol Biotechnol; 2018 Jul; 28(7):1037-1051. PubMed ID: 29913546 [TBL] [Abstract][Full Text] [Related]
18. Microbial Consortiums of Putative Degraders of Low-Density Polyethylene-Associated Compounds in the Ocean. Pinto M; Zhao Z; Klun K; Libowitzky E; Herndl GJ mSystems; 2022 Apr; 7(2):e0141521. PubMed ID: 35229650 [TBL] [Abstract][Full Text] [Related]
19. Polyethylene Degradation by a Tao X; Ouyang H; Zhou A; Wang D; Matlock H; Morgan JS; Ren AT; Mu D; Pan C; Zhu X; Han A; Zhou J Environ Sci Technol; 2023 Sep; 57(37):13901-13911. PubMed ID: 37682848 [TBL] [Abstract][Full Text] [Related]
20. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. Táncsics A; Benedek T; Szoboszlay S; Veres PG; Farkas M; Máthé I; Márialigeti K; Kukolya J; Lányi S; Kriszt B Syst Appl Microbiol; 2015 Feb; 38(1):1-7. PubMed ID: 25466921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]