These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34716368)
21. Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region. Pineda MC; Viloria J; Martínez-Casasnovas JA Environ Monit Assess; 2016 Apr; 188(4):255. PubMed ID: 27358998 [TBL] [Abstract][Full Text] [Related]
22. Relation between land cover and landslide susceptibility in Val d'Aran, Pyrenees (Spain): Historical aspects, present situation and forward prediction. Shu H; Hürlimann M; Molowny-Horas R; González M; Pinyol J; Abancó C; Ma J Sci Total Environ; 2019 Nov; 693():133557. PubMed ID: 31369891 [TBL] [Abstract][Full Text] [Related]
23. GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India. Das J; Saha P; Mitra R; Alam A; Kamruzzaman M Heliyon; 2023 May; 9(5):e16186. PubMed ID: 37234665 [TBL] [Abstract][Full Text] [Related]
24. Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data. Bhuyan K; Tanyaş H; Nava L; Puliero S; Meena SR; Floris M; van Westen C; Catani F Sci Rep; 2023 Jan; 13(1):162. PubMed ID: 36599911 [TBL] [Abstract][Full Text] [Related]
25. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
26. A revised landslide inventory of the Campania region (Italy). Fusco F; Tufano R; De Vita P; Di Martire D; Di Napoli M; Guerriero L; Mileti FA; Terribile F; Calcaterra D Sci Data; 2023 Jun; 10(1):355. PubMed ID: 37277358 [TBL] [Abstract][Full Text] [Related]
27. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368 [TBL] [Abstract][Full Text] [Related]
28. A heuristic approach to global landslide susceptibility mapping. Stanley T; Kirschbaum DB Nat Hazards (Dordr); 2017 May; 87(1):145-164. PubMed ID: 33867675 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan. Aslam B; Maqsoom A; Khalil U; Ghorbanzadeh O; Blaschke T; Farooq D; Tufail RF; Suhail SA; Ghamisi P Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590797 [TBL] [Abstract][Full Text] [Related]
30. Investigating the dynamic nature of landslide susceptibility in the Indian Himalayan region. Sharma A; Sandhu HAS Environ Monit Assess; 2024 Feb; 196(3):257. PubMed ID: 38349601 [TBL] [Abstract][Full Text] [Related]
31. Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya. Chen TK; Kincey ME; Rosser NJ; Seto KC Sci Total Environ; 2024 Apr; 922():171161. PubMed ID: 38387570 [TBL] [Abstract][Full Text] [Related]
32. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Guri PK; Ray PK; Patel RC Environ Monit Assess; 2015 Jun; 187(6):324. PubMed ID: 25944750 [TBL] [Abstract][Full Text] [Related]
33. Quantitative Assessment of Landslide Susceptibility Comparing Statistical Index, Index of Entropy, and Weights of Evidence in the Shangnan Area, China. Liu J; Duan Z Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266593 [TBL] [Abstract][Full Text] [Related]
34. Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures Municipality. Guillard C; Zezere J Environ Manage; 2012 Oct; 50(4):721-35. PubMed ID: 22864551 [TBL] [Abstract][Full Text] [Related]
35. GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Chowdhury MS; Rahman MN; Sheikh MS; Sayeid MA; Mahmud KH; Hafsa B Heliyon; 2024 Jan; 10(1):e23424. PubMed ID: 38163149 [TBL] [Abstract][Full Text] [Related]
36. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran. Eitvandi N; Sarikhani R; Derikvand S Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313 [TBL] [Abstract][Full Text] [Related]
37. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling - Benefits of exploring landslide data collection effects. Steger S; Mair V; Kofler C; Pittore M; Zebisch M; Schneiderbauer S Sci Total Environ; 2021 Jul; 776():145935. PubMed ID: 33652311 [TBL] [Abstract][Full Text] [Related]
38. Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery. Zhong C; Li C; Gao P; Li H Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372479 [TBL] [Abstract][Full Text] [Related]
39. Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Eskandari M; Homaee M; Falamaki A Environ Sci Pollut Res Int; 2016 Jun; 23(12):12423-34. PubMed ID: 26983913 [TBL] [Abstract][Full Text] [Related]
40. Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey. Karaman MO; Çabuk SN; Pekkan E Environ Sci Pollut Res Int; 2022 Dec; 29(60):91285-91305. PubMed ID: 35882738 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]