BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34716669)

  • 1. Heterogeneous treatment effect analysis based on machine-learning methodology.
    Gong X; Hu M; Basu M; Zhao L
    CPT Pharmacometrics Syst Pharmacol; 2021 Nov; 10(11):1433-1443. PubMed ID: 34716669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of machine learning clustering algorithms for detecting heterogeneity of treatment effect in acute respiratory distress syndrome: A secondary analysis of three randomised controlled trials.
    Sinha P; Spicer A; Delucchi KL; McAuley DF; Calfee CS; Churpek MM
    EBioMedicine; 2021 Dec; 74():103697. PubMed ID: 34861492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preventing false discovery of heterogeneous treatment effect subgroups in randomized trials.
    Rigdon J; Baiocchi M; Basu S
    Trials; 2018 Jul; 19(1):382. PubMed ID: 30012181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emulate randomized clinical trials using heterogeneous treatment effect estimation for personalized treatments: Methodology review and benchmark.
    Ling Y; Upadhyaya P; Chen L; Jiang X; Kim Y
    J Biomed Inform; 2023 Jan; 137():104256. PubMed ID: 36455806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview of modern approaches for identifying and evaluating heterogeneous treatment effects from clinical data.
    Lipkovich I; Svensson D; Ratitch B; Dmitrienko A
    Clin Trials; 2023 Aug; 20(4):380-393. PubMed ID: 37203150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous treatment effects analysis for social scientists: A review.
    Hu A
    Soc Sci Res; 2023 Jan; 109():102810. PubMed ID: 36470639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative Causal Forest: A Novel Algorithm for Subgroup Identification.
    Wang T; Keil AP; Kim S; Wyss R; Htoo PT; Funk MJ; Buse JB; Kosorok MR; Stürmer T
    Am J Epidemiol; 2024 May; 193(5):764-776. PubMed ID: 37943684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the heterogeneous effect of a modifiable risk factor on suicide: The case of vitamin D deficiency.
    Zubizarreta JR; Umhau JC; Deuster PA; Brenner LA; King AJ; Petukhova MV; Sampson NA; Tizenberg B; Upadhyaya SK; RachBeisel JA; Streeten EA; Kessler RC; Postolache TT
    Int J Methods Psychiatr Res; 2022 Mar; 31(1):e1897. PubMed ID: 34739164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning Approach to Model Interaction Effects: Development and Application to Alcohol Deoxyfluorination.
    Żurański AM; Gandhi SS; Doyle AG
    J Am Chem Soc; 2023 Apr; 145(14):7898-7909. PubMed ID: 36988153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Random survival forest: applying machine learning algorithm in survival analysis of biomedical data].
    Chen Z; Xu HM; Li ZX; Zhang Y; Zhou T; You WC; Pan KF; Li WQ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2021 Jan; 55(1):104-109. PubMed ID: 33455140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Heterogeneity of Treatment Effect in Real-World Data.
    Segal JB; Varadhan R; Groenwold RHH; Li X; Nomura K; Kaplan S; Ardeshirrouhanifard S; Heyward J; Nyberg F; Burcu M
    Ann Intern Med; 2023 Apr; 176(4):536-544. PubMed ID: 36940440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rule ensemble method with adaptive group lasso for heterogeneous treatment effect estimation.
    Wan K; Tanioka K; Shimokawa T
    Stat Med; 2023 Aug; 42(19):3413-3442. PubMed ID: 37282988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing machine learning models for relative humidity prediction in air-based energy systems and environmental management applications.
    Qadeer K; Ahmad A; Qyyum MA; Nizami AS; Lee M
    J Environ Manage; 2021 Aug; 292():112736. PubMed ID: 33992871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achiral-Chiral Two-Dimensional Liquid Chromatography Platform to Support Automated High-Throughput Experimentation in the Field of Drug Development.
    Goyon A; Masui C; Sirois LE; Han C; Yehl P; Gosselin F; Zhang K
    Anal Chem; 2020 Nov; 92(22):15187-15193. PubMed ID: 33142065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting resources efficiently and justifiably by combining causal machine learning and theory.
    Gur Ali O
    Front Artif Intell; 2022; 5():1015604. PubMed ID: 36568581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations.
    Hu L; Ji J; Liu H; Ennis R
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-World Evidence, Causal Inference, and Machine Learning.
    Crown WH
    Value Health; 2019 May; 22(5):587-592. PubMed ID: 31104739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.