BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34716685)

  • 1. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.
    Wang Z; Fan Q; Guo W; Yang C; Fu Y
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103632. PubMed ID: 34716685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries.
    Ma T; Liu L; Wang J; Lu Y; Chen J
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11533-11539. PubMed ID: 32297392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.
    Chen M; Liu L; Zhang P; Chen H
    RSC Adv; 2021 Jul; 11(39):24429-24435. PubMed ID: 35479055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable Aqueous Aluminum Organic Batteries.
    Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Linked PVA/HNT Composite Separator Enables Stable Lithium-Organic Batteries under Elevated Temperature.
    Gong Z; Zheng S; Zhang J; Duan Y; Luo Z; Cai F; Yuan Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11474-11482. PubMed ID: 35213142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Highly Immobilized Organic Anode Material for High Performance Rechargeable Lithium Batteries.
    Zhang S; Ren S; Han D; Xiao M; Wang S; Sun L; Meng Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36237-36246. PubMed ID: 32689786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.
    Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J
    J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.
    Wu M; Cui Y; Bhargav A; Losovyj Y; Siegel A; Agarwal M; Ma Y; Fu Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10027-31. PubMed ID: 27411083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Inorganic to Organic Iodine: Stabilization of I
    Zhu F; Li Z; Wang Z; Fu Y; Guo W
    J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38597691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium n-Doped Polyaniline as a High-Performance Electroactive Material for Rechargeable Batteries.
    Jiménez P; Levillain E; Alévêque O; Guyomard D; Lestriez B; Gaubicher J
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1553-1556. PubMed ID: 28044392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithiated Sulfur-Incorporated, Polymeric Cathode for Durable Lithium-Sulfur Batteries with Promoted Redox Kinetics.
    Dong F; Peng C; Xu H; Zheng Y; Yao H; Yang J; Zheng S
    ACS Nano; 2021 Dec; 15(12):20287-20299. PubMed ID: 34817165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries.
    Li W; Xu H; Zhang H; Wei F; Huang L; Ke S; Fu J; Jing C; Cheng J; Liu S
    Nat Commun; 2023 Aug; 14(1):5235. PubMed ID: 37640714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.