These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 34717024)

  • 1. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscope image based fully automated stomata detection and pore measurement method for grapevines.
    Jayakody H; Liu S; Whitty M; Petrie P
    Plant Methods; 2017; 13():94. PubMed ID: 29151841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-Based Quantification of Arabidopsis thaliana Stomatal Aperture from Leaf Images.
    Takagi M; Hirata R; Aihara Y; Hayashi Y; Mizutani-Aihara M; Ando E; Yoshimura-Kono M; Tomiyama M; Kinoshita T; Mine A; Toda Y
    Plant Cell Physiol; 2023 Dec; 64(11):1301-1310. PubMed ID: 36943732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection.
    Sakoda K; Watanabe T; Sukemura S; Kobayashi S; Nagasaki Y; Tanaka Y; Shiraiwa T
    Sci Rep; 2019 May; 9(1):7610. PubMed ID: 31110228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning.
    Sultana SN; Park H; Choi SH; Jo H; Song JT; Lee JD; Kang YJ
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stomata classification and detection system in microscope images of maize cultivars.
    Aono AH; Nagai JS; Dickel GDSM; Marinho RC; de Oliveira PEAM; Papa JP; Faria FA
    PLoS One; 2021; 16(10):e0258679. PubMed ID: 34695146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From leaf to label: A robust automated workflow for stomata detection.
    Meeus S; Van den Bulcke J; Wyffels F
    Ecol Evol; 2020 Sep; 10(17):9178-9191. PubMed ID: 32953053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled temperate hardwood tree stomatal image datasets from seven taxa of Populus and 17 hardwood species.
    Wang J; Renninger HJ; Ma Q
    Sci Data; 2024 Jan; 11(1):1. PubMed ID: 38168111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of deep learning for the analysis of stomata: A review of current methods and future directions.
    Gibbs JA; Burgess AJ
    J Exp Bot; 2024 May; ():. PubMed ID: 38716775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating Automated Stomata Analysis Through Simplified Sample Collection and Imaging Techniques.
    Millstead L; Jayakody H; Patel H; Kaura V; Petrie PR; Tomasetig F; Whitty M
    Front Plant Sci; 2020; 11():580389. PubMed ID: 33101348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLPA-Net: A Real-Time Recognition Network for Intelligent Stomata Localization and Phenotypic Analysis.
    Yang XH; Wang YT; Wu MH; Li F; Zhou CL; Yang LJ; Zheng C; Li Y; Li Z; Guo SY; Song CP
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):372-382. PubMed ID: 38335071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation.
    Zhang F; Wang B; Lu F; Zhang X
    Plant Phenomics; 2023; 5():0106. PubMed ID: 37817885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Overview of High-Throughput Crop Phenotyping: Platform, Image Analysis, Data Mining, and Data Management.
    Yang W; Feng H; Hu X; Song J; Guo J; Lu B
    Methods Mol Biol; 2024; 2787():3-38. PubMed ID: 38656479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RotatedStomataNet: a deep rotated object detection network for directional stomata phenotype analysis.
    Yang X; Wang J; Li F; Zhou C; Wu M; Zheng C; Yang L; Li Z; Li Y; Guo S; Song C
    Plant Cell Rep; 2024 Apr; 43(5):126. PubMed ID: 38652181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant microphenotype: from innovative imaging to computational analysis.
    Zhang Y; Gu S; Du J; Huang G; Shi J; Lu X; Wang J; Yang W; Guo X; Zhao C
    Plant Biotechnol J; 2024 Apr; 22(4):802-818. PubMed ID: 38217351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.).
    Meng X; Nakano A; Hoshino Y
    Planta; 2023 Sep; 258(4):77. PubMed ID: 37673805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal pore width and area measurements in
    Lucas JR; Dupree B
    MicroPubl Biol; 2023; 2023():. PubMed ID: 37602279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid non-destructive method to phenotype stomatal traits.
    Pathoumthong P; Zhang Z; Roy SJ; El Habti A
    Plant Methods; 2023 Mar; 19(1):36. PubMed ID: 37004073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TrichomeYOLO: A Neural Network for Automatic Maize Trichome Counting.
    Xu J; Yao J; Zhai H; Li Q; Xu Q; Xiang Y; Liu Y; Liu T; Ma H; Mao Y; Wu F; Wang Q; Feng X; Mu J; Lu Y
    Plant Phenomics; 2023; 5():0024. PubMed ID: 36930773
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.