These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34717267)

  • 1. The rise of thawing drip: Freezing rate effects on ice crystallization and myowater dynamics changes.
    Qian S; Hu F; Mehmood W; Li X; Zhang C; Blecker C
    Food Chem; 2022 Mar; 373(Pt B):131461. PubMed ID: 34717267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the emerging of thawing drip: Role of myofibrillar protein renaturation.
    Qian S; Hu F; Li X; Zhang C; Blecker C
    Food Chem; 2022 Nov; 393():133398. PubMed ID: 35689925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the origin of thaw loss: Relationship between freezing rate and protein denaturation.
    Zhang Y; Ertbjerg P
    Food Chem; 2019 Nov; 299():125104. PubMed ID: 31279125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thawed drip and its membrane-separated components: Role in retarding myofibrillar protein gel deterioration during freezing-thawing cycles.
    Li Y; Han X; Zhang Y; Wang Y; Wang J; Teng W; Wang W; Cao J
    Food Res Int; 2024 Jul; 188():114461. PubMed ID: 38823861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic changes involved in water holding capacity of frozen bovine longissimus dorsi muscles based on DIA strategy.
    Qian S; Li X; Liu C; Zhang C; Blecker C
    J Food Biochem; 2022 Oct; 46(10):e14330. PubMed ID: 35848392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review.
    Zhang Y; Kim YHB; Puolanne E; Ertbjerg P
    Meat Sci; 2022 Aug; 190():108841. PubMed ID: 35533633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Antifreeze Peptide Pretreatment on Ice Crystal Size, Drip Loss, Texture, and Volatile Compounds of Frozen Carrots.
    Kong CH; Hamid N; Liu T; Sarojini V
    J Agric Food Chem; 2016 Jun; 64(21):4327-35. PubMed ID: 27138051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies of glass vial breakage for frozen formulations. I. Vial breakage caused by crystallizable excipient mannitol.
    Jiang G; Akers M; Jain M; Guo J; Distler A; Swift R; Wadhwa MV; Jameel F; Patro S; Freund E
    PDA J Pharm Sci Technol; 2007; 61(6):441-51. PubMed ID: 18410045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pigskin gelatin hydrolysate on the porcine meat quality during freezing.
    Lu J; Wang Y; Chen B; Xie Y; Nie W; Zhou H; Xu B
    Meat Sci; 2022 Oct; 192():108907. PubMed ID: 35901583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofibrillar protein characteristics of fast or slow frozen pork during subsequent storage at -3 °C.
    Zhang Y; Magro A; Puolanne E; Zotte AD; Ertbjerg P
    Meat Sci; 2021 Jun; 176():108468. PubMed ID: 33636547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Migration Pattern of Atrazine during the Processes of Water Freezing and Thawing.
    Zhang Y; Zhao C; Yu A; Zhao W; Ren F; Liu Y
    Toxics; 2022 Oct; 10(10):. PubMed ID: 36287883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between ice crystal size, water content and proton NMR relaxation times in cells.
    Cameron IL; Hunter KE; Ord VA; Fullerton GD
    Physiol Chem Phys Med NMR; 1985; 17(4):371-86. PubMed ID: 3836419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fast freezing then thaw-aging on meat quality attributes of lamb M. longissimus lumborum.
    Balan P; Kim YHB; Stuart AD; Kemp R; Staincliffe M; Craigie C; Farouk MM
    Anim Sci J; 2019 Aug; 90(8):1060-1069. PubMed ID: 31218792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength.
    Zhang Y; Puolanne E; Ertbjerg P
    Food Chem; 2021 Feb; 338():128017. PubMed ID: 32927203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of chicken breast meat quality after freeze/thaw abuse using magnetic resonance imaging techniques.
    Frelka JC; Phinney DM; Yang X; Knopp MV; Heldman DR; Wick MP; Vodovotz Y
    J Sci Food Agric; 2019 Jan; 99(2):844-853. PubMed ID: 30003554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preservable effects of ultrasound-assisted alginate oligosaccharide soaking on cooked crayfish subjected to Freeze-Thaw cycles.
    Han J; Sun Y; Zhang T; Wang C; Xiong L; Ma Y; Zhu Y; Gao R; Wang L; Jiang N
    Ultrason Sonochem; 2023 Jan; 92():106259. PubMed ID: 36502681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel observations of "freeze resistance" and dynamic blue and green dorsal coloration in frozen and thawing Dryophytes chrysoscelis.
    Yokum EE; Goldstein DL; Krane CM
    J Exp Zool A Ecol Integr Physiol; 2023 Dec; 339(10):1044-1051. PubMed ID: 37661700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correlative study of the freezing patterns in rat myocardium using scanning and transmission electron microscopes.
    Dalen H; Scheie P
    Acta Physiol Scand Suppl; 1991; 599():47-60. PubMed ID: 1907797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of constant-current pulsed electric field thawing on proteins and water-holding capacity of frozen porcine longissimus muscle.
    Yang N; Yao H; Zhang A; Jin Y; Zhang X; Xu X
    Food Chem; 2024 Oct; 454():139784. PubMed ID: 38815321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.
    Deng Q; Wang Y; Sun L; Li J; Fang Z; Gooneratne R
    J Food Sci; 2018 Jul; 83(7):1810-1815. PubMed ID: 29905948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.