These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Oscillation death in asymmetrically delay-coupled oscillators. Zou W; Tang Y; Li L; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046206. PubMed ID: 22680555 [TBL] [Abstract][Full Text] [Related]
5. A common lag scenario in quenching of oscillation in coupled oscillators. Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600 [TBL] [Abstract][Full Text] [Related]
6. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators. Li BW; Fu C; Zhang H; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046207. PubMed ID: 23214663 [TBL] [Abstract][Full Text] [Related]
7. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
8. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators. Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483 [TBL] [Abstract][Full Text] [Related]
9. Experimental observations of synchronization between two bidirectionally coupled physically dissimilar oscillators. Huang K; Sorrentino F; Hossein-Zadeh M Phys Rev E; 2020 Oct; 102(4-1):042215. PubMed ID: 33212708 [TBL] [Abstract][Full Text] [Related]
11. Quenching of oscillations via attenuated coupling for dissimilar electrochemical systems. Roy T; Escalona J; Rivera M; Montoya F; Álvarez ER; Phogat R; Parmananda P Phys Rev E; 2023 Feb; 107(2-1):024208. PubMed ID: 36932615 [TBL] [Abstract][Full Text] [Related]
12. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
13. Multiscale dynamics in communities of phase oscillators. Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978 [TBL] [Abstract][Full Text] [Related]
14. Chaotic synchronization under unidirectional coupling: numerics and experiments. Cruz JM; Rivera M; Parmananda P J Phys Chem A; 2009 Aug; 113(32):9051-6. PubMed ID: 19610633 [TBL] [Abstract][Full Text] [Related]
15. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators. Banerjee T; Ghosh D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062902. PubMed ID: 25019846 [TBL] [Abstract][Full Text] [Related]
16. Generalizing the transition from amplitude to oscillation death in coupled oscillators. Zou W; Senthilkumar DV; Koseska A; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):050901. PubMed ID: 24329205 [TBL] [Abstract][Full Text] [Related]
17. Cooperative dynamics in coupled systems of fast and slow phase oscillators. Sakaguchi H; Okita T Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336 [TBL] [Abstract][Full Text] [Related]
18. Mixed-mode oscillation suppression states in coupled oscillators. Ghosh D; Banerjee T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052913. PubMed ID: 26651768 [TBL] [Abstract][Full Text] [Related]
19. Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling. Kiss IZ; Zhai Y; Hudson JL; Zhou C; Kurths J Chaos; 2003 Mar; 13(1):267-78. PubMed ID: 12675433 [TBL] [Abstract][Full Text] [Related]
20. Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling. Ghosh D; Banerjee T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062908. PubMed ID: 25615165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]