These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34717323)

  • 1. Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing.
    Röhm A; Gauthier DJ; Fischer I
    Chaos; 2021 Oct; 31(10):103127. PubMed ID: 34717323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning unseen coexisting attractors.
    Gauthier DJ; Fischer I; Röhm A
    Chaos; 2022 Nov; 32(11):113107. PubMed ID: 36456323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning continuous chaotic attractors with a reservoir computer.
    Smith LM; Kim JZ; Lu Z; Bassett DS
    Chaos; 2022 Jan; 32(1):011101. PubMed ID: 35105129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing.
    Luo H; Du Y; Fan H; Wang X; Guo J; Wang X
    Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing.
    Tsuchiyama K; Röhm A; Mihana T; Horisaki R; Naruse M
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attractor reconstruction with reservoir computers: The effect of the reservoir's conditional Lyapunov exponents on faithful attractor reconstruction.
    Hart JD
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38579149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the origins of switching dynamics in a multifunctional reservoir computer.
    Flynn A; Amann A
    Front Netw Physiol; 2024; 4():1451812. PubMed ID: 39431241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning of chaotic systems.
    Guo Y; Zhang H; Wang L; Fan H; Xiao J; Wang X
    Chaos; 2021 Jan; 31(1):011104. PubMed ID: 33754764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction, forecasting, and stability of chaotic dynamics from partial data.
    Özalp E; Margazoglou G; Magri L
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37671991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reservoir-computing based associative memory and itinerancy for complex dynamical attractors.
    Kong LW; Brewer GA; Lai YC
    Nat Commun; 2024 Jun; 15(1):4840. PubMed ID: 38844437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Templex: A bridge between homologies and templates for chaotic attractors.
    Charó GD; Letellier C; Sciamarella D
    Chaos; 2022 Aug; 32(8):083108. PubMed ID: 36049919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting nonsmooth chaotic dynamics by reservoir computing.
    Shi L; Wang H; Wang S; Du R; Qu SX
    Phys Rev E; 2024 Jan; 109(1-1):014214. PubMed ID: 38366462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reservoir computing with higher-order interactive coupled pendulums.
    Li X; Small M; Lei Y
    Phys Rev E; 2023 Dec; 108(6-1):064304. PubMed ID: 38243442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global forecasts in reservoir computers.
    Harding S; Leishman Q; Lunceford W; Passey DJ; Pool T; Webb B
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38407397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistability and hidden attractors in the paradigmatic Rössler'76 system.
    Malasoma JM; Malasoma N
    Chaos; 2020 Dec; 30(12):123144. PubMed ID: 33380068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems.
    Lu Z; Pathak J; Hunt B; Girvan M; Brockett R; Ott E
    Chaos; 2017 Apr; 27(4):041102. PubMed ID: 28456169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctionality in a reservoir computer.
    Flynn A; Tsachouridis VA; Amann A
    Chaos; 2021 Jan; 31(1):013125. PubMed ID: 33754772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-free prediction of multistability using echo state network.
    Roy M; Mandal S; Hens C; Prasad A; Kuznetsov NV; Dev Shrimali M
    Chaos; 2022 Oct; 32(10):101104. PubMed ID: 36319300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.