These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34717323)

  • 21. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning delay coordinate dynamics for chaotic attractors from partial observable data.
    Young CD; Graham MD
    Phys Rev E; 2023 Mar; 107(3-1):034215. PubMed ID: 37073016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Architecture of chaotic attractors for flows in the absence of any singular point.
    Letellier C; Malasoma JM
    Chaos; 2016 Jun; 26(6):063115. PubMed ID: 27368780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symmetry kills the square in a multifunctional reservoir computer.
    Flynn A; Herteux J; Tsachouridis VA; Räth C; Amann A
    Chaos; 2021 Jul; 31(7):073122. PubMed ID: 34340331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations.
    Li C; Wang E; Wang J
    J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strange attractor existence for non-local operators applied to four-dimensional chaotic systems with two equilibrium points.
    Doungmo Goufo EF
    Chaos; 2019 Feb; 29(2):023117. PubMed ID: 30823728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time series reconstructing using calibrated reservoir computing.
    Chen Y; Qian Y; Cui X
    Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring chaos in the Lorenz and Rössler models: Fidelity tests for reservoir computing.
    Scully JJ; Neiman AB; Shilnikov AL
    Chaos; 2021 Sep; 31(9):093121. PubMed ID: 34598438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impulsive systems with growing numbers of chaotic attractors.
    Zhang X; Chen G
    Chaos; 2022 Jul; 32(7):071102. PubMed ID: 35907717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine-learning inference of fluid variables from data using reservoir computing.
    Nakai K; Saiki Y
    Phys Rev E; 2018 Aug; 98(2-1):023111. PubMed ID: 30253537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On bifurcations of Lorenz attractors in the Lyubimov-Zaks model.
    Kazakov A
    Chaos; 2021 Sep; 31(9):093118. PubMed ID: 34598457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forecasting chaotic systems with very low connectivity reservoir computers.
    Griffith A; Pomerance A; Gauthier DJ
    Chaos; 2019 Dec; 29(12):123108. PubMed ID: 31893676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences.
    Letellier C; Mendes EMAM; Malasoma JM
    Phys Rev E; 2023 Oct; 108(4-1):044209. PubMed ID: 37978674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach.
    Chen X; Weng T; Yang H; Gu C; Zhang J; Small M
    Phys Rev E; 2020 Sep; 102(3-1):033314. PubMed ID: 33075895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.