These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34717335)

  • 1. Sensitivity of actuation dynamics on normal and lateral Casimir forces: Interaction of phase change and topological insulator materials.
    Tajik F; Sedighi M; Palasantzas G
    Chaos; 2021 Oct; 31(10):103103. PubMed ID: 34717335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties.
    Tajik F; Allameh N; Masoudi AA; Palasantzas G
    Chaos; 2022 Sep; 32(9):093149. PubMed ID: 36182392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of non-equilibrium Casimir forces on material optical properties toward chaotic motion during device actuation.
    Tajik F; Babamahdi Z; Sedighi M; Masoudi AA; Palasantzas G
    Chaos; 2019 Sep; 29(9):093126. PubMed ID: 31575132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics.
    Tajik F; Masoudi AA; Sedighi M; Palasantzas G
    Chaos; 2020 Jul; 30(7):073101. PubMed ID: 32752649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of chaotic behavior on optical properties and electrostatic effects in double-beam torsional Casimir actuation.
    Tajik F; Sedighi M; Masoudi AA; Waalkens H; Palasantzas G
    Phys Rev E; 2018 Aug; 98(2-1):022210. PubMed ID: 30253502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.
    Tajik F; Sedighi M; Khorrami M; Masoudi AA; Palasantzas G
    Phys Rev E; 2017 Oct; 96(4-1):042215. PubMed ID: 29347478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of nonequilibrium Casimir forces on low frequency optical properties toward chaotic motion of microsystems: Drude vs plasma model.
    Tajik F; Masoudi AA; Babamahdi Z; Sedighi M; Palasantzas G
    Chaos; 2020 Feb; 30(2):023108. PubMed ID: 32113219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of chaotic behavior to low optical frequencies of a double-beam torsional actuator.
    Tajik F; Sedighi M; Masoudi AA; Waalkens H; Palasantzas G
    Phys Rev E; 2019 Jul; 100(1-1):012201. PubMed ID: 31499864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of materials' optical response on actuation dynamics by Casimir forces.
    Sedighi M; Broer WH; Van der Veeke S; Svetovoy VB; Palasantzas G
    J Phys Condens Matter; 2015 Jun; 27(21):214014. PubMed ID: 25965096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects.
    Bao Y; Guérout R; Lussange J; Lambrecht A; Cirelli RA; Klemens F; Mansfield WM; Pai CS; Chan HB
    Phys Rev Lett; 2010 Dec; 105(25):250402. PubMed ID: 21231564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of angle-dependent Casimir force between corrugations.
    Banishev AA; Wagner J; Emig T; Zandi R; Mohideen U
    Phys Rev Lett; 2013 Jun; 110(25):250403. PubMed ID: 23829717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.
    Ashourvan A; Miri M; Golestanian R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040103. PubMed ID: 17500845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches.
    Yang R; Qian J; Feng PX
    Small; 2020 Dec; 16(51):e2005594. PubMed ID: 33236527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hide it to see it better: a robust setup to probe the thermal Casimir effect.
    Bimonte G
    Phys Rev Lett; 2014 Jun; 112(24):240401. PubMed ID: 24996071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of the lateral casimir force.
    Chen F; Mohideen U; Klimchitskaya GL; Mostepanenko VM
    Phys Rev Lett; 2002 Mar; 88(10):101801. PubMed ID: 11909341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.
    Miri M; Nekouie V; Golestanian R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016104. PubMed ID: 20365429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral Casimir Force on a Rotating Particle near a Planar Surface.
    Manjavacas A; Rodríguez-Fortuño FJ; García de Abajo FJ; Zayats AV
    Phys Rev Lett; 2017 Mar; 118(13):133605. PubMed ID: 28409961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical actuation of microelectromechanical systems by the Casimir force.
    Chan HB; Aksyuk VA; Kleiman RN; Bishop DJ; Capasso F
    Science; 2001 Mar; 291(5510):1941-4. PubMed ID: 11239149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings.
    Wang M; Tang L; Ng CY; Messina R; Guizal B; Crosse JA; Antezza M; Chan CT; Chan HB
    Nat Commun; 2021 Jan; 12(1):600. PubMed ID: 33500401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casimir-force-driven ratchets.
    Emig T
    Phys Rev Lett; 2007 Apr; 98(16):160801. PubMed ID: 17501407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.