These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34717380)

  • 1. Performance analysis and implementation of a scanning tunneling potentiometry setup: Toward low-noise and high-sensitivity measurements of the electrochemical potential.
    Marković T; Huang W; Gambardella P; Stepanow S
    Rev Sci Instrum; 2021 Oct; 92(10):103707. PubMed ID: 34717380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and performance of a practical variable-temperature scanning tunneling potentiometry system.
    Rozler M; Beasley MR
    Rev Sci Instrum; 2008 Jul; 79(7):073904. PubMed ID: 18681713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile high resolution scanning tunneling potentiometry implementation.
    Druga T; Wenderoth M; Homoth J; Schneider MA; Ulbrich RG
    Rev Sci Instrum; 2010 Aug; 81(8):083704. PubMed ID: 20815610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning tunneling potentiometry implemented into a multi-tip setup by software.
    Lüpke F; Korte S; Cherepanov V; Voigtländer B
    Rev Sci Instrum; 2015 Dec; 86(12):123701. PubMed ID: 26724036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first principles scanning tunneling potentiometry study of an opaque graphene grain boundary in the ballistic transport regime.
    Bevan KH
    Nanotechnology; 2014 Oct; 25(41):415701. PubMed ID: 25248965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic features in the electrochemical potential drop across a graphene grain boundary.
    Hoffmann-Vogel R
    Nanotechnology; 2014 Dec; 25(48):480501. PubMed ID: 25397732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum Resistance Anisotropy of Epitaxial Graphene on SiC.
    Momeni Pakdehi D; Aprojanz J; Sinterhauf A; Pierz K; Kruskopf M; Willke P; Baringhaus J; Stöckmann JP; Traeger GA; Hohls F; Tegenkamp C; Wenderoth M; Ahlers FJ; Schumacher HW
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):6039-6045. PubMed ID: 29377673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invited Review Article: Multi-tip scanning tunneling microscopy: Experimental techniques and data analysis.
    Voigtländer B; Cherepanov V; Korte S; Leis A; Cuma D; Just S; Lüpke F
    Rev Sci Instrum; 2018 Oct; 89(10):101101. PubMed ID: 30399776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shot-noise measurements of single-atom junctions using a scanning tunneling microscope.
    Tamir I; Caspari V; Rolf D; Lotze C; Franke KJ
    Rev Sci Instrum; 2022 Feb; 93(2):023702. PubMed ID: 35232162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate induced nanoscale resistance variation in epitaxial graphene.
    Sinterhauf A; Traeger GA; Momeni Pakdehi D; Schädlich P; Willke P; Speck F; Seyller T; Tegenkamp C; Pierz K; Schumacher HW; Wenderoth M
    Nat Commun; 2020 Jan; 11(1):555. PubMed ID: 31992696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry.
    Wang W; Munakata K; Rozler M; Beasley MR
    Phys Rev Lett; 2013 Jun; 110(23):236802. PubMed ID: 25167521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplifier for scanning tunneling microscopy at MHz frequencies.
    Bastiaans KM; Benschop T; Chatzopoulos D; Cho D; Dong Q; Jin Y; Allan MP
    Rev Sci Instrum; 2018 Sep; 89(9):093709. PubMed ID: 30278769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local potentiometry using a multiprobe scanning tunneling microscope.
    Bannani A; Bobisch CA; Möller R
    Rev Sci Instrum; 2008 Aug; 79(8):083704. PubMed ID: 19044354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Invasive Nanoscale Potentiometry and Ballistic Transport in Epigraphene Nanoribbons.
    De Cecco A; Prudkovskiy VS; Wander D; Ganguly R; Berger C; de Heer WA; Courtois H; Winkelmann CB
    Nano Lett; 2020 May; 20(5):3786-3790. PubMed ID: 32271586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low noise, low heat dissipation, high gain AC-DC front end amplification for scanning probe microscopy.
    Messina P; Fradin FY; Pittana P
    Nanotechnology; 2009 Feb; 20(5):055705. PubMed ID: 19417364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic scale shot-noise using cryogenic MHz circuitry.
    Massee F; Dong Q; Cavanna A; Jin Y; Aprili M
    Rev Sci Instrum; 2018 Sep; 89(9):093708. PubMed ID: 30278734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities.
    Kalinin SV; Dyck O; Balke N; Neumayer S; Tsai WY; Vasudevan R; Lingerfelt D; Ahmadi M; Ziatdinov M; McDowell MT; Strelcov E
    ACS Nano; 2019 Sep; 13(9):9735-9780. PubMed ID: 31433942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of molecular beam epitaxy and multi-probe scanning tunneling potentiometry combined system.
    Li L; Zheng C; Liu Y; Hu X; Ji SH; Chen X; Xue QK
    Rev Sci Instrum; 2019 Sep; 90(9):093703. PubMed ID: 31575260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.