These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34717414)

  • 1. Relative calibration of a retarding field energy analyzer sensor array for spatially resolved measurements of the ion flux and ion energy in low temperature plasmas.
    Ries S; Schroeder M; Woestefeld M; Corbella C; Korolov I; Awakowicz P; Schulze J
    Rev Sci Instrum; 2021 Oct; 92(10):103503. PubMed ID: 34717414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer.
    Sharma S; Gahan D; Kechkar S; Daniels S; Hopkins MB
    Rev Sci Instrum; 2014 Apr; 85(4):043509. PubMed ID: 24784609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution energy analyzer for broad ion beam characterization.
    Kanarov V; Siegfried D; Sferlazzo P; Hayes A; Yevtukhov R
    Rev Sci Instrum; 2008 Sep; 79(9):093304. PubMed ID: 19044404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Compact Pre-Lens Retarding Field Energy Analyzer for Energy Distribution Measurements of an Electron Gun.
    Lee HR; Hwang J; Ogawa T; Jung H; Yun DJ; Lee S; Park IY
    Microsc Microanal; 2022 Sep; ():1-9. PubMed ID: 36062359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode.
    Gahan D; Dolinaj B; Hopkins MB
    Rev Sci Instrum; 2008 Mar; 79(3):033502. PubMed ID: 18377005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the ion temperature and energy distribution in a lithium-plasma interaction test stand with a retarding field energy analyzer.
    Christenson M; Stemmley S; Jung S; Mettler J; Sang X; Martin D; Kalathiparambil K; Ruzic DN
    Rev Sci Instrum; 2017 Aug; 88(8):083501. PubMed ID: 28863682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of gridded energy analyzer and laser induced fluorescence measurements of a two-component ion distribution.
    Harvey Z; Thakur SC; Hansen A; Hardin R; Przybysz WS; Scime EE
    Rev Sci Instrum; 2008 Oct; 79(10):10F314. PubMed ID: 19044627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retarding field energy analyzer for high energy pulsed electron beam measurements.
    Hu J; Rovey JL; Zhao W
    Rev Sci Instrum; 2017 Jan; 88(1):013302. PubMed ID: 28147681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories.
    van de Ven THM; de Meijere CA; van der Horst RM; van Kampen M; Banine VY; Beckers J
    Rev Sci Instrum; 2018 Apr; 89(4):043501. PubMed ID: 29716357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.
    Sharma S; Gahan D; Scullin P; Doyle J; Lennon J; Vijayaraghavan RK; Daniels S; Hopkins MB
    Rev Sci Instrum; 2016 Apr; 87(4):043511. PubMed ID: 27131678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact scanning retarding potential analyzer.
    Goebel DM; Becatti G
    Rev Sci Instrum; 2021 Jan; 92(1):013511. PubMed ID: 33514243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study and design of a lens-type retarding field energy analyzer without a grid electrode.
    Hwang J; Kim KI; Ogawa T; Cho B; Kim DH; Park IY
    Ultramicroscopy; 2020 Feb; 209():112880. PubMed ID: 31765817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions.
    Rafalskyi D; Dudin S; Aanesland A
    Rev Sci Instrum; 2015 May; 86(5):053302. PubMed ID: 26026517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron beam water calorimetry measurements to obtain beam quality conversion factors.
    Muir BR; Cojocaru CD; McEwen MR; Ross CK
    Med Phys; 2017 Oct; 44(10):5433-5444. PubMed ID: 28688120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber.
    Vasquez MR; Wada M
    Rev Sci Instrum; 2016 Feb; 87(2):02B924. PubMed ID: 26932096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large diameter permanent-magnets-expanded plasma source for spontaneous generation of low-energy ion beam.
    Takahashi K; Suzuki T; Ando A
    Rev Sci Instrum; 2014 Feb; 85(2):02C101. PubMed ID: 24593631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Node-to-node field calibration of wireless distributed air pollution sensor network.
    Kizel F; Etzion Y; Shafran-Nathan R; Levy I; Fishbain B; Bartonova A; Broday DM
    Environ Pollut; 2018 Feb; 233():900-909. PubMed ID: 28951042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air.
    Domanský K; Baldwin DL; Grate JW; Hall TB; Li J; Josowicz M; Janata J
    Anal Chem; 1998 Feb; 70(3):473-81. PubMed ID: 21644746
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.