These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34717438)

  • 1. Aerosol jet printed 3 omega sensors for thermal conductivity measurement.
    Kempf N; Zhang Y
    Rev Sci Instrum; 2021 Oct; 92(10):105008. PubMed ID: 34717438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput, spatially resolved thermal properties measurement using attachable and reusable 3ω sensors.
    Chalise D; Tee R; Zeng Y; Kaur S; Pokharna H; Prasher RS
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37676087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing.
    Borghetti M; Serpelloni M; Sardini E
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freestanding Flexible Sensor Based on 3
    Qiu L; Ma Y; Ouyang Y; Feng Y; Zhang X
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues.
    Lubner SD; Choi J; Wehmeyer G; Waag B; Mishra V; Natesan H; Bischof JC; Dames C
    Rev Sci Instrum; 2015 Jan; 86(1):014905. PubMed ID: 25638111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum Detection Concentration of Hydrogen in Air Depending on Substrate Type and Design of the 3ω Sensor.
    Oh DW; Kang K; Lee JH
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber.
    Schiffres SN; Malen JA
    Rev Sci Instrum; 2011 Jun; 82(6):064903. PubMed ID: 21721720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric Pressure and Ambient Temperature Plasma Jet Sintering of Aerosol Jet Printed Silver Nanoparticles.
    Turan N; Saeidi-Javash M; Chen J; Zeng M; Zhang Y; Go DB
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47244-47251. PubMed ID: 34546717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of thermal conductivity of PbTe nanocrystal coated glass fibers by the 3ω method.
    Finefrock SW; Wang Y; Ferguson JB; Ward JV; Fang H; Pfluger JE; Dudis DS; Ruan X; Wu Y
    Nano Lett; 2013 Nov; 13(11):5006-12. PubMed ID: 24147725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination.
    Qiu L; Tang DW; Zheng XH; Su GP
    Rev Sci Instrum; 2011 Apr; 82(4):045106. PubMed ID: 21529038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.
    Wilson AA; Muñoz Rojo M; Abad B; Perez JA; Maiz J; Schomacker J; Martín-Gonzalez M; Borca-Tasciuc DA; Borca-Tasciuc T
    Nanoscale; 2015 Oct; 7(37):15404-12. PubMed ID: 26335503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique.
    Qiu L; Zheng XH; Zhu J; Tang DW
    Rev Sci Instrum; 2011 Aug; 82(8):086110. PubMed ID: 21895288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching the Practical Conductivity Limits of Aerosol Jet Printed Silver.
    Rosker ES; Barako MT; Nguyen E; DiMarzio D; Kisslinger K; Duan DW; Sandhu R; Goorsky MS; Tice J
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29684-29691. PubMed ID: 32496037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ 3omega techniques for measuring thermal conductivity of phase-change materials.
    Risk WP; Rettner CT; Raoux S
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026108. PubMed ID: 18315340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3
    Singhal D; Paterson J; Tainoff D; Richard J; Ben-Khedim M; Gentile P; Cagnon L; Bourgault D; Buttard D; Bourgeois O
    Rev Sci Instrum; 2018 Aug; 89(8):084902. PubMed ID: 30184711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method.
    Sikora A; Ftouni H; Richard J; Hébert C; Eon D; Omnès F; Bourgeois O
    Rev Sci Instrum; 2012 May; 83(5):054902. PubMed ID: 22667639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.