These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Ali Q; Daud MK; Haider MZ; Ali S; Rizwan M; Aslam N; Noman A; Iqbal N; Shahzad F; Deeba F; Ali I; Zhu SJ Plant Physiol Biochem; 2017 Oct; 119():50-58. PubMed ID: 28843888 [TBL] [Abstract][Full Text] [Related]
3. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Nawaz F; Ashraf MY; Ahmad R; Waraich EA Biol Trace Elem Res; 2013 Feb; 151(2):284-93. PubMed ID: 23197374 [TBL] [Abstract][Full Text] [Related]
4. Profiling of energy compartmentalization in photosystem II (PSII), light harvesting complexes and specific energy fluxes of primed maize cultivar (P1429) under salt stress environment. Ansari HH; Siddiqui A; Wajid D; Tabassum S; Umar M; Siddiqui ZS Plant Physiol Biochem; 2022 Jan; 170():296-306. PubMed ID: 34952249 [TBL] [Abstract][Full Text] [Related]
5. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Rai-Kalal P; Jajoo A Plant Physiol Biochem; 2021 Mar; 160():341-351. PubMed ID: 33548801 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of silicon priming and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Azeem M; Iqbal N; Kausar S; Javed MT; Akram MS; Sajid MA Environ Sci Pollut Res Int; 2015 Sep; 22(18):14367-71. PubMed ID: 26154041 [TBL] [Abstract][Full Text] [Related]
7. Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola ( Ayyaz A; Amir M; Umer S; Iqbal M; Bano H; Gul HS; Noor Y; Kanwal A; Khalid A; Javed M; Athar HR; Zafar ZU; Farooq MA Heliyon; 2020 Jul; 6(7):e04364. PubMed ID: 32695901 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Zivcak M; Brestic M; Balatova Z; Drevenakova P; Olsovska K; Kalaji HM; Yang X; Allakhverdiev SI Photosynth Res; 2013 Nov; 117(1-3):529-46. PubMed ID: 23860828 [TBL] [Abstract][Full Text] [Related]
9. Mesophyll conductance, photoprotective process and optimal N partitioning are essential to the maintenance of photosynthesis at N deficient condition in a wheat yellow-green mutant (Triticum aestivum L.). Li H; Li J; Zhang X; Shi T; Chai X; Hou P; Wang Y J Plant Physiol; 2021 Aug; 263():153469. PubMed ID: 34252704 [TBL] [Abstract][Full Text] [Related]
10. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Tomar RS; Jajoo A Ecotoxicol Environ Saf; 2014 Nov; 109():110-5. PubMed ID: 25173746 [TBL] [Abstract][Full Text] [Related]
11. Calcium amendment for improved germination, plant growth, and leaf photosynthetic electron transport in oat (Avena sativa) under NaCl stress. Wang X; Dingxuan Q; Shi M PLoS One; 2021; 16(8):e0256529. PubMed ID: 34428242 [TBL] [Abstract][Full Text] [Related]
12. Physio-biochemical mechanism of melatonin seed priming in stimulating growth and drought tolerance in bread wheat. Shaheen S; Lalarukh I; Ahmad J; Zulqadar SA; Alharbi SA; Hareem M; Alarfaj AA; Ansari MJ BMC Plant Biol; 2024 Oct; 24(1):918. PubMed ID: 39354351 [TBL] [Abstract][Full Text] [Related]
13. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). Joshi A; Kaur S; Dharamvir K; Nayyar H; Verma G J Sci Food Agric; 2018 Jun; 98(8):3148-3160. PubMed ID: 29220088 [TBL] [Abstract][Full Text] [Related]
14. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
15. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
16. Natural variation in photosynthetic electron transport of wheat flag leaves in response to dark-induced senescence. Yang C; Zhang Z; Yuan Y; Zhang D; Jin H; Li Y; Du S; Li X; Fang B; Wei F; Yan G J Photochem Photobiol B; 2024 Oct; 259():113018. PubMed ID: 39182402 [TBL] [Abstract][Full Text] [Related]
17. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Lian J; Wu J; Xiong H; Zeb A; Yang T; Su X; Su L; Liu W J Hazard Mater; 2020 Mar; 385():121620. PubMed ID: 31744724 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. Fercha A; Capriotti AL; Caruso G; Cavaliere C; Samperi R; Stampachiacchiere S; Laganà A J Proteomics; 2014 Aug; 108():238-57. PubMed ID: 24859728 [TBL] [Abstract][Full Text] [Related]
19. Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. Gao M; Qi Y; Song W; Xu H Chemosphere; 2016 May; 151():76-83. PubMed ID: 26928333 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]