BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 34717648)

  • 1. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance.
    Wang Z; Wang X; Wang Y; Zhu Y; Liu X; Zhou Q
    J Nanobiotechnology; 2021 Oct; 19(1):353. PubMed ID: 34717648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis.
    Wang Z; Mei L; Liu X; Zhou Q
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111802. PubMed ID: 33964526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tremella-Like ZnO@Col-I-Decorated Titanium Surfaces with Dual-Light-Defined Broad-Spectrum Antibacterial and Triple Osteogenic Properties.
    Zhao S; Xu Y; Xu W; Weng Z; Cao F; Wan X; Cui T; Yu Y; Liao L; Wang X
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30044-30051. PubMed ID: 32589010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants.
    Lin MH; Wang YH; Kuo CH; Ou SF; Huang PZ; Song TY; Chen YC; Chen ST; Wu CH; Hsueh YH; Fan FY
    Carbohydr Polym; 2021 Apr; 257():117639. PubMed ID: 33541664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous TiO
    Wen Z; Shi X; Li X; Liu W; Liu Y; Zhang R; Yu Y; Su J
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15235-15249. PubMed ID: 36926829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants].
    Liu P; Fan B; Zou L; Lü L; Gao Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Oct; 37(10):1300-1313. PubMed ID: 37848328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/nanostructured TiO
    Zhang R; Xu N; Liu X; Yang X; Yan H; Ma J; Feng Q; Shen Z
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2838-2845. PubMed ID: 31307228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and evaluation of silver modified micro/nano structured titanium implant.
    Huang C; Wang H; Yao L; Li L; Lou W; Yao L; Shi Y; Li R
    J Biomater Appl; 2024 Feb; 38(7):848-857. PubMed ID: 38266656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-driven fabrication of calcium and phosphorous-doped zinc oxide heterostructures on titanium to achieve dual functions of osteogenesis and preventing bacterial infections.
    Ullah I; Ou P; Xie L; Liao Q; Zhao F; Gao A; Ren X; Li Y; Wang G; Wu Z; Chu PK; Wang H; Tong L
    Acta Biomater; 2024 Feb; 175():382-394. PubMed ID: 38160853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes.
    Zhao X; You L; Wang T; Zhang X; Li Z; Ding L; Li J; Xiao C; Han F; Li B
    Int J Nanomedicine; 2020; 15():8583-8594. PubMed ID: 33173295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling.
    Liu W; Su P; Gonzales A; Chen S; Wang N; Wang J; Li H; Zhang Z; Webster TJ
    Int J Nanomedicine; 2015; 10():1997-2019. PubMed ID: 25792833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review.
    Li Y; Yang Y; Qing Y; Li R; Tang X; Guo D; Qin Y
    Int J Nanomedicine; 2020; 15():6247-6262. PubMed ID: 32903812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants.
    Chopra D; Gulati K; Ivanovski S
    Acta Biomater; 2021 Jun; 127():80-101. PubMed ID: 33744499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility.
    Liu W; Su P; Chen S; Wang N; Ma Y; Liu Y; Wang J; Zhang Z; Li H; Webster TJ
    Nanoscale; 2014 Aug; 6(15):9050-62. PubMed ID: 24971593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties.
    Zhang Y; Wang F; Huang Q; Patil AB; Hu J; Fan L; Yang Y; Duan H; Dong X; Lin C
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110690. PubMed ID: 32204005
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Okuzu Y; Fujibayashi S; Yamaguchi S; Masamoto K; Otsuki B; Goto K; Kawai T; Shimizu T; Morizane K; Kawata T; Shimizu Y; Hayashi M; Matsuda S
    J Biomater Appl; 2021 Jan; 35(6):670-680. PubMed ID: 32954894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity.
    Zeng X; Xiong S; Zhuo S; Liu C; Miao J; Liu D; Wang H; Zhang Y; Wang C; Liu Y
    Int J Nanomedicine; 2019; 14():1849-1863. PubMed ID: 30880984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment.
    Zhu WQ; Shao SY; Xu LN; Chen WQ; Yu XY; Tang KM; Tang ZH; Zhang FM; Qiu J
    J Nanobiotechnology; 2019 Apr; 17(1):55. PubMed ID: 30992009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods.
    Li J; Tan L; Liu X; Cui Z; Yang X; Yeung KWK; Chu PK; Wu S
    ACS Nano; 2017 Nov; 11(11):11250-11263. PubMed ID: 29049874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Titania Nanotubes in Bone Biology.
    Nair M; Elizabeth E
    J Nanosci Nanotechnol; 2015 Feb; 15(2):939-55. PubMed ID: 26353600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.