These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34717729)

  • 1. Characterization and adaptation of Caldicellulosiruptor strains to higher sugar concentrations, targeting enhanced hydrogen production from lignocellulosic hydrolysates.
    Byrne E; Björkmalm J; Bostick JP; Sreenivas K; Willquist K; van Niel EWJ
    Biotechnol Biofuels; 2021 Oct; 14(1):210. PubMed ID: 34717729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity.
    Pawar SS; Vongkumpeang T; Grey C; van Niel EW
    Biotechnol Biofuels; 2015; 8():19. PubMed ID: 25722741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization techniques improve volumetric hydrogen productivity of Caldicellulosiruptor species in a modified continuous stirred tank reactor.
    Vongkampang T; Sreenivas K; Grey C; van Niel EWJ
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):25. PubMed ID: 36793132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture.
    Zeidan AA; Rådström P; van Niel EW
    Microb Cell Fact; 2010 Dec; 9():102. PubMed ID: 21192828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.
    Peng X; Qiao W; Mi S; Jia X; Su H; Han Y
    Biotechnol Biofuels; 2015; 8():131. PubMed ID: 26322125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
    Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM
    J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-linear model of hydrogen production by
    Björkmalm J; Byrne E; van Niel EWJ; Willquist K
    Biotechnol Biofuels; 2018; 11():175. PubMed ID: 29977336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of simultaneous uptake of xylose and glucose in Caldicellulosiruptor kronotskyensis for optimal hydrogen production.
    Vongkampang T; Sreenivas K; Engvall J; Grey C; van Niel EWJ
    Biotechnol Biofuels; 2021 Apr; 14(1):91. PubMed ID: 33832529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biohydrogen production from high loads of unpretreated cattle manure by cellulolytic bacterium Caldicellulosiruptor bescii at 75 °C.
    Tunca B; Kutlar FE; Kas A; Yilmazel YD
    Waste Manag; 2023 Sep; 171():401-410. PubMed ID: 37776811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.
    Blumer-Schuette SE; Lewis DL; Kelly RM
    Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process.
    Soto LR; Byrne E; van Niel EWJ; Sayed M; Villanueva CC; Hatti-Kaul R
    Bioresour Technol; 2019 Jan; 272():259-266. PubMed ID: 30352368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana.
    de Vrije T; Bakker RR; Budde MA; Lai MH; Mars AE; Claassen PA
    Biotechnol Biofuels; 2009 Jun; 2(1):12. PubMed ID: 19534765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus.
    Willquist K; Pawar SS; Van Niel EW
    Microb Cell Fact; 2011 Dec; 10():111. PubMed ID: 22189215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw.
    Panagiotopoulos IA; Bakker RR; de Vrije T; Claassen PA; Koukios EG
    Bioresour Technol; 2013 Jan; 128():345-50. PubMed ID: 23196256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus.
    Ljunggren M; Willquist K; Zacchi G; van Niel EW
    Biotechnol Biofuels; 2011 Sep; 4(1):31. PubMed ID: 21914204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [