These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34718360)

  • 1. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems.
    Cheng Z; Zhao D; Ma J; Li W; Li S
    J Phys Chem A; 2020 Jun; 124(24):5007-5014. PubMed ID: 32459485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined fragment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions.
    Liao K; Dong S; Cheng Z; Li W; Li S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18559-18567. PubMed ID: 35916054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach.
    Li W; Dong H; Ma J; Li S
    Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning builds full-QM precision protein force fields in seconds.
    Han Y; Wang Z; Wei Z; Liu J; Li J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation Free Energy Calculations with Quantum Mechanics/Molecular Mechanics and Machine Learning Models.
    Zhang P; Shen L; Yang W
    J Phys Chem B; 2019 Jan; 123(4):901-908. PubMed ID: 30557020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.
    Akin-Ojo O; Song Y; Wang F
    J Chem Phys; 2008 Aug; 129(6):064108. PubMed ID: 18715052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems.
    Liao K; Wang S; Li W; Li S
    Phys Chem Chem Phys; 2021 Sep; 23(35):19394-19401. PubMed ID: 34490874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations.
    Bleiziffer P; Schaller K; Riniker S
    J Chem Inf Model; 2018 Mar; 58(3):579-590. PubMed ID: 29461814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and Efficient Prediction of NMR Parameters of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method.
    Zhao D; Shen X; Cheng Z; Li W; Dong H; Li S
    J Chem Theory Comput; 2020 May; 16(5):2995-3005. PubMed ID: 32302485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems.
    Böselt L; Thürlemann M; Riniker S
    J Chem Theory Comput; 2021 May; 17(5):2641-2658. PubMed ID: 33818085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions.
    Li W
    J Chem Phys; 2013 Jan; 138(1):014106. PubMed ID: 23298027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.